

PHASE III PERMIT APPLICATION CHESAPEAKE TERRACE RUBBLE LANDFILL ANNE ARUNDEL COUNTY, MARYLAND

TABLE OF CONTENTS

VOLUME 1 OF 3

Engineer's Certification

Section 1 - Executive Summary

Section 2 - Waste Acceptance and Area to be Served

Section 3 - Project Description

Section 4 - Groundwater Separation

Section 5 - Landfill Design Life

Section 6 - Site Environmental Conditions

Section 7 - Sequence, Schedule and Contract Documents for Landfill Construction

Section 8 - Soils Description

Section 9 - Geotechnical Considerations
Section 10 - Leachate Management (partial)

VOLUME 2 OF 3

Section 10 - Leachate Management (continued)
Section 11 - Landfill Gas Management Plan

Section 12 - Operations Plan

Section 13 - Construction Quality Assurance (CQA) Plan

Section 14 - Technical Specifications

Section 15 - Closure and Post-Closure Plan Section 16 - Groundwater Monitoring Plan

VOLUME 3 OF 3

Section 17 - Stormwater Management Plan

Section 18 - Drawings

SECTION 17 STORMWATER MANAGEMENT

TABLE OF CONTENTS

<u>SECT</u>	<u>ION</u>			<u>PAGE</u>
17.0	SURF	ACE WATER MANAG	EMENT SYSTEM	17-1
	17.1		urface Water Management System	
	17.2	•		
		17.2.2 Soils		17-1
	17.3	Stormwater Manager	ment	17-2
			/lanagement – Input Parameters	
	17.4	Stormwater Manager	ment – Analysis Results	17-3
			ditions	
		17.4.2 Basin Routing]	17-4
			gn	
		17.4.3.1	Channel and Culvert - Input Parameters	17-5
		17.4.3.2	Channel – Analyses Results	17-6
		17.4.4 Culvert - Ana	lyses Results	17-8
		17.4.5 Water Quality	/	17-8
		17.4.5.1	Water Quality Volume	17-9
		17.4.5.2	Recharge Volume	
	17.5			
	17.6	Conclusion		17-10

LIST OF ATTACHMENTS

<u>Attachment</u>

Design Storm Selection 17A **Existing Conditions** 17B Proposed Basin Routing 17C Channel Flow Rates 17D 17E -Channel Design Culvert Design 17F WQv Design 17G -17H Soil Loss Soils Survey Map 17I

17.0 SURFACE WATER MANAGEMENT SYSTEM

As part of the design of the landfill and associated improvements, stormwater management features were designed. These features included perimeter channels, terraces and downchutes, roadside channels, roadway crossing culverts, and four (4) stormwater management detention basins and a water quality basin along the East Entrance Road. This design confirmed that the peak stormwater runoff rates from the proposed improvements during the 25-year and 100-year, 24-hour storm events will be less than the existing conditions of the site for the same storm events.

This narrative presents the supporting technical rationale behind the design of the new features.

17.1 Design Criteria for Surface Water Management System

The primary objective of the surface water management system is to convey rainwater off the landfill cap surface quickly and effectively. Since the surface water management features are to perform in support of a landfill, the modeled design storms selected as the 25-year, 24-hour storm event, which has a corresponding rainfall depth of 5.9 inches for this County, while giving consideration to the 100-year, 24-hour storm event, based on the NOAA (National Oceanic and Atmospheric Administration) Atlas 14 rainfall value of 8.5 inches.

Water quality impacts from the proposed improvements were provided in accordance with the 2000 Maryland Stormwater Design Manual Unified Stormwater Sizing Criteria (revised May 2009).

17.2 Existing Conditions

17.2.1 Climate

The mean annual precipitation for this area is approximately 45 inches, while the mean annual evaporation from lakes and shallow reservoirs is approximately 37 inches (Viessman et al., 1989). Gabler, et al. (1987), describe this climate as "humid subtropical" in the Köppen classification, with a growing season of approximately 170 days.

17.2.2 Soils

The Site's historical use for mining classifies the Site soil profile as "manmade." The Soil Conservation Service categorizes soils hydrologically into four types (A through D, from permeable to impermeable) based upon the soil's ability to drain. Based on site-specific information, a hydrologic soil type of "C" was assumed for the existing capped conditions.

17.2.3 Land Use

The existing land use of the project area is undeveloped with a significant portion of the area wooded. (The site has been subject to surface mining operations in the past that have created irregular grading of the site.) The site generally slopes from west to east towards wetland areas along Patuxent Road, and drains to the Little Patuxent River.

17.3 Stormwater Management

In order to design new features at the site for the landfill use, the surface water runoff flow rates were determined for each surface water feature using methods described in Urban Hydrology for Small Watersheds, identified as Technical Release 55 (or TR-55), developed by the Soil Conservation Service (June 1986). This runoff rate was used to back-calculate the required geometric configuration for the new features.

The Program HydroCAD Version 8.50 was utilized to perform the stormwater analysis of the site to document compliance with the peak runoff rate requirements for each feature.

The following sections define the methods and input parameters used to evaluate the performance of the surface water management system and resulting design of the proposed repairs.

Runoff rates calculated from TR-55 were utilized to design the proposed stormwater management basins for the project. Basin routing calculations for the basins were performed to show compliance with the peak rate requirements during the 25-year and 100-year storm events.

17.3.1 Stormwater Management – Input Parameters

The input parameters for the TR-55 calculations consist of the following:

- Watershed delineation
- Watershed areas
- Curve numbers
- Times of concentration
- Storm type
- Design storm event

These input parameters are described in the following paragraphs.

Watershed Delineation

Watersheds for each drainage feature were delineated using the Site topographic maps at a contour interval of 2 feet. Off-site portions of the watersheds were delineated from 2011 topographic survey data downloaded from the County's website. The outlet points for each watershed were typically selected as the points of discharge from the five basins (Point of Study).

Watershed Areas

After performing the watershed delineation, the drainage area to each basin was determined within AutoCAD.

Curve Numbers

The curve number (CN), which assists in the estimation of the runoff, was evaluated using the projected future land uses in combination with the soil descriptions and hydrologic classifications. The CN values were obtained from the CN tables presented in the manual for TR-55. The curve numbers were calculated by overlaying the watershed areas over the soils data and aerial photography of the area. Existing conditions cover type for the site consisted of

Woods in good condition. Offsite existing conditions consisted of Woods in good condition, and a composite curve number value based upon the zoning. The two zoning areas were RA and R-2. For the proposed conditions, the onsite areas consisted of impervious areas, woods, good condition for undisturbed areas, Open Space, Good for disturbed areas to be maintained as grass, and the Closure Cap areas. Offsite areas curve numbers matched the existing conditions. The Cap was assumed to be a D soil type. All disturbed areas were reduced one hydrologic soil group in the proposed condition.

Time of Concentration

The time of concentration for each watershed was determined by evaluating the time that is required for water to travel from the hydrologically most distant point in the watershed to the discharge point. After selecting this point, the time of concentration was estimated by summing the travel times for sheet flow, shallow concentrated flow, channel flow, and pipe flow, where applicable. The calculations for these travel times were performed using methods outlined in the manual for TR-55. All of these computations involve the surface roughness, the length and the slope of the path selected. Sheet flow length was calculated for a maximum length of 100 feet. Shallow concentrated flow and trapezoidal channel flow were the other types of flow modeled in the time of concentration calculations.

Storm Type

The intensity and pattern of a storm varies, depending upon the Site's location relative to geographic features, such as mountains, large waterbodies, etc. TR-55 defines four storm types (I, II, IIA, and III) and maps the geographic regions where each type occurs. The storm type for this county is Type II, which represents the most intense short duration rainfall storm type of the four available.

Design Storm Event

Design storm events can last from 1 minute to 24 hours with a recurrence interval of 1 year to 500 years. EPA CFR Title 40 § 264.301 and §258.26 requires that surface water is managed based upon a 25-year, 24-hour storm event. Although not required for the Site, the 100-year, 24-hour storm event based upon NOAA Atlas 14 rainfall data was also modeled for conservatism. The NOAA Atlas 14 100-year 24-hour storm of 8.5 inches of rain for Anne Arundel County was selected over MDE's Unified Stormwater Sizing Criteria value of 7.4 inches for a 100 year 24-hour storm event, providing a larger volume for modeling.

A formal discussion as well as copies of the references are included in Attachment 17A.

17.4 Stormwater Management – Analysis Results

After developing the input parameters described above, the storm water analyses were performed for existing and proposed conditions. First, the watershed area, curve number, time of concentration, and storm type for existing conditions were input into the program HydroCAD 8.50. The output from this program is a runoff hydrograph based upon the TR-55 methodology for each watershed that provides the peak stormwater runoff rates for each watershed and corresponding drainage feature

17.4.1 Existing Conditions

The existing peak runoff rate to each point of study was utilized to provide the maximum runoff rate allowed to discharge from the proposed condition discharge points for ready comparison.

The formal calculation and supporting HydroCAD model for the existing conditions are provided in Attachment 17B.

Discharge Point	25 year, 24 hour Peak Flow (cfs)	100 year, 24 hour Peak Flow (cfs)
1	178.07	358.75
2	58.42	109.65
3	105.36	244.80
4	124.88	259.87
Subtotal	466.73	973.07
Conrail	22.09	48.87
East Entrance (incl WQv area)	389.64	739.58
TOTAL	810.82	1,629.55

17.4.2 Basin Routing

The watershed area, curve number, time of concentration, and storm type for the proposed conditions to each point of study were input into the program HydroCAD 8.50. Stage-Storage-Discharge calculations for the five (5) proposed basins (one (1) water quality basin and four (4) detention basins) were entered into the program, and a dynamic routing of each basin performed. The discharge from each basin along with the unmanaged area within each point of study were added together within the program and compared to the existing conditions peak rate to ensure the proposed conditions peak rate is less than the existing conditions peak rate for both design storms so as to not negatively impact the downstream hydrologic system.

Feature	Basin No. 1	Basin No. 2	Basin No. 3	Basin No. 4	WQv
Bottom of Basin (ft MSL)	79.0	72.0	72.0	76.5	88.0
Top of Wet Storage (ft MSL)	81.0	74.0	74.0	78.5	N/A
Invert of low flow Orifice (ft MSL)	81.0	74.0	74.0	78.5	88.0
Size of low flow Orifice (inches)	9	8	6	6	3
Elevation of Riser (ft MSL)	84.5	77.0	77.0	83.6	89.5
Dimensions of Riser (ft x ft)	3 x 6.5	3 x 6.5	3 x 6.5	7 x 10	4 x 4
Shape of Riser	rectangle	rectangle	rectangle	rectangle	rectangle
Invert of Emergency Spillway (ft	90.0	78.0	78.5	88.15	90.8
MSL)					
Width of Emergency Spillway (ft)	250	45	100	90	20
25-yea	r, 24-hour s	torm event r	outing		
Peak Qin (cfs)	386.46	49.6	195.44	186.05	19.12
Peak Qout (cfs)	140.81	3.75	54.16	95.11	15.6
Max Water Surface Elev (ft MSL)	86.60	77.06	77.89	84.49	90.11
Riser Engaged?	Yes	Yes	Yes	Yes	Yes
Emergency Spillway Engaged?	No	No	No	No	No
% Reduction	64	92	72	49	18
	Total Qout	= 309.43 cfs			

Feature	Basin	Basin	Basin	Basin	WQv			
	No. 1	No. 2	No. 3	No. 4				
100-year, 24-hour storm event routing								
Peak Qin (cfs)	672.36	110.04	314.99	399.01	32.48			
Peak Qout (cfs)	255.13	58.51	193.46	184.84	26.48			
Max Water Surface Elev (ft MSL)	90.22	77.93	79.10	88.13	91.10			
Riser Engaged?	Yes	Yes	Yes	Yes	Yes			
Emergency Spillway Engaged?	Yes	No	Yes	No	Yes			
% Reduction	62	47	59	54	18			
	Total Qout	= 718.42 cfs						

The analysis is presented in Attachment 17C.

17.4.3 Channel Design

The peak runoff rate to each channel was calculated with the TR-55 methodology described above. The runoff rates were then used to determine the drainage channel configuration, using Manning's Equation for open channel flow, where:

$$Q = \frac{1.49}{n} S^{1/2} R h^{2/3} A$$

such that:

Q = runoff rate (cfs)

n = Manning's roughness coefficient S = channel longitudinal slope (ft/ft)

 R_h = hydraulic radius (ft) = A/P

A = area of flow P = wetted perimeter

17.4.3.1 Channel and Culvert - Input Parameters

The input parameters for the TR-55 calculations and Manning's equation consist of the following:

- Manning's roughness coefficient
- Channel slope
- Channel geometry

These input parameters are described in the following sections.

Manning's Roughness Coefficient

In order to design the channels, which convey runoff from the Landfill, the Manning's roughness coefficient was required. This coefficient is related to the resistance provided by the type and condition of the channel lining. For example, a concrete lined channel has a lower roughness coefficient than a grass lined channel. This coefficient inversely impacts the flow capacity of the channel.

Channel Slope

The channel slope directly impacts the channel capacity and velocity. As a result, it is required input information. The channel slope is determined by dividing the elevation difference by the channel length. A channel slope must be selected to ensure positive drainage, and to assess the channel cross-section and channel velocity.

Channel Geometry

The channel geometry directly impacts the channel capacity. Therefore, the channel shape and dimensions are input. Several channel configurations were evaluated to select the most efficient channel geometry.

17.4.3.2 Channel -Analyses Results

After developing all of the input parameters described above, the storm water analyses were performed. First, the peak rates of discharge were calculated as described above for the 25-year and 100-year storm events. The runoff rates were developed using HydroCAD, V 8.5 and are presented in Attachment 17D.

The minimum channel design flow depth required to convey the peak runoff rate was back-calculated using Manning's equation for open channel flow incorporating the channel slope, the channel lining (i.e., Manning's roughness coefficient), and various geometric configurations. The channel depth was calculated by adding the design flow depth to an appropriate freeboard (0.5 feet), and then rounding this sum to the nearest tenth-foot. Freeboard is the unused capacity in the channel under the defined flow rate. This avoids channels flowing bank full during storms. Bank full channels can be overtopped, are blown by wind, and can over-saturate underlying soils. The proposed configuration of the channels is a trapezoidal channel lined with articulated concrete block.

Four types of channels will be used: terraces, downchutes, access road channels, and perimeter channels. The terraces will convey stormwater runoff horizontally from the landfill slope faces to downchutes. The downchutes will convey the water down the exterior slopes of the landfill cells to the perimeter channel, which will convey the water to the basins. The access road channels is located along the inside edge of the final cover access road and typically discharges into a downchute, at locations where the access road crosses the downchute.

A summary of the resulting channel sizes are below:

Channel	Channel Dimensions			25-year, 2	24-hour	100-year, 24-hour		
ID				storm		storm event		
	Base	Depth	Side	Qout	V (fps)*	Qout	V (fps)*	
	Width		Slope	(cfs)		(cfs)		
			DOWNCH	UTES				
DC- 1	15.3	1.0	2H:1V	60.95	12.1	94.79	14.4	
DC- 2	13.8	1.0	2H:1V	54.36	12.0	85.88	14.3	
DC-3	17.9	1.0	2H:1V	70.96	12.1	113.02	14.4	
DC- 4	13.8	1.0	2H:1V	49.88	11.6	80.10	13.9	
DC-5	13.8	1.0	2H:1V	51.59	11.8	82.86	14.1	
DC-6	17.9	1.0	2H:1V	68.55	11.9	107.42	14.2	
DC- 7	17.9	1.0	2H:1V	65.04	11.9	103.58	14.0	
DC-8	17.9	1.0	2H:1V	59.62	11.4	100.17	13.8	
DC- 9	12.4	1.0	2H:1V	47.30	11.8	74.71	14.0	
DC- 10	16.5	1.0	2H:1V	58.89	11.6	93.03	14.0	
DC- 20	11.0	1.0	2H:1V	35.77	11.0	57.44	13.3	
DC- 21	15.1	1.0	2H:1V	53.31	11.6	85.62	13.9	
DC- 22	9.6	1.0	2H:1V	29.30	10.7	47.05	12.8	
DC- 23	11	1.0	2H:1V	42.90	11.9	68.89	13.9	
		PE	RIMETER C	HANNELS				
PC- 1	9.6	2.5	2H:1V	64.62	5.7	158.72	6.6	
PC-2	4.1	2.0	2H:1V	31.83	5.7	57.96	6.6	
PC-3A	4.1	2.0	2H:1V	15.97	6.4	24.83	7.6	
PC-3B	9.6	2.0	2H:1V	80.84	7.7	128.22	4.7	
PC-3C	13.8	2.6	2H:1V	140.25	8.2	228.15	9.0	
PC-3D	15.1	2.6	2H:1V	197.64	7.0	319.29	9.7	
PC-3E	15.1	3.2	2H:1V	282.93	9.1	455.14	10.6	
PC-4A	4.1	2.0	2H:1V	40.72	6.1	63.32	6.9	
PC-4B	13.8	2.0	2H:1V	109.16	7.2	170.64	8.4	
PC-4C	13.8	2.5	2H:1V	160.59	7.7	253.31	8.9	
PC-4D	15.1	2.8	2H:1V	210.30	8.8	333.21	10.2	
PC-4E	15.1	3.3	2H:1V	281.05	9.1	445.99	10.5	
PC-4F	15.1	3.5	2H:1V	347.91	9.7	552.08	11.2	
PC- 5	9.6	2.2	2H:1V	81.01	8.9	126.24	10.3	
PC- 6	8.3	2.0	2H:1V	24.00	7.4	65.73	10.5	
PC- 7	2.8	2.0	2H:1V	17.34	8.9	26.77	10.1	
PC-8A	2.8	2.0	2H:1V	36.51	7.2	57.29	8.1	
PC-8B	8.3	2.0	2H:1V	113.80	8.4	180.49	9.3	
PC-8C	17.9	2.2	2H:1V	279.88	8.1	444.63	9.4	
PC- 9A	8.3	2.6	2H:1V	48.18	5.4	76.42	6.2	
PC- 9B	9.6	2.6	2H:1V	91.08	6.4	145.31	7.4	
PC-9C	13.8	2.6	2H:1V	122.84	4.6	195.09	5.3	
PC- 10	9.6	2.0	2H:1V	68.46	8.4	164.87	11.2	

This analysis is presented in Attachment 17F.

The final terrace design is: Triangular channel,

4H:1V on one side; 10H:1V on the other

1 foot deep. Grassed lined.

The final cover access road channel will be the following configuration:

Trapezoidal channel,

4H:1V on one side; 2H:1V on the other

3 foot base width 1 foot deep.

Grassed lined.

17.4.4 Culvert - Analyses Results

The runoff rates developed from TR-55, ran through HydroCAD, were used to size the culverts within the channels using the nomographs provided by smooth-walled HDPE drainage pipe manufacturers. The culverts are to be used at the road crossings of downchutes and perimeter channels. In the perimeter channels culverts will be covered and used as a driveway to access the leachate pump buildings.

Culvert ID	Inflow Channel	25-year, 24-hour	100-year, 24-hour	Cul	vert Dimensi	ons
	<u> </u>	Q (cfs)	Q (cfs)	Culvert Dia	# Culverts	Material
1	PC-5	418.56	673.39	60 inches	2	HDPE
2	PC-4F	347.91	552.08	30-inches	4	HDPE
3	PC-10	68.46	164.87	48-inches	1	HDPE
4	PC-8C	279.9	444.63	54-inches	2	HDPE
5	PC-2	31.8	57.96	24-inches	2	HDPE
6	PC-1	44.0	101.3	30-inch	2	HDPE
7	PC-6	24.0	65.73	30-inch	1	HDPE
8	Off-site	186.05	399.01	48-inches	1	HDPE
	flow to					
	Basin 4					
AR-1	DC-2	67	106	24-inches	3	HDPE
AR-2	1/2 DC-1	30	47	18-inches	2	HDPE
AR-4 3	PC-8A	36.5	57.3	24-inches	2	HDPE

Note: Modification of the landfill slopes from 33% to 25% reduced the number of top of cap access culverts. Therefore, there are now only 3 AR Culverts (2 on the West Area and 1 on the East Area).

This analysis is presented in Attachment 17F.

17.4.5 Water Quality

The methodology described within Chapter 2 – Unified Stormwater Sizing Criteria from the 2000 Maryland Stormwater Design Manual (Manual, revised May 2009) was utilized to calculate the required and provided water quality for the project. The purpose of the unified sizing criteria are to "meet pollutant removal goals, maintain groundwater recharge, reduce channel erosion,

prevent overbank flooding, and pass extreme floods." These requirements are met by designing stormwater management features that meet the Water Quality Volume, Recharge Volume, and Channel Protection Storage Volume.

17.4.5.1 Water Quality Volume

The Water Quality Volume (WQv) is based upon the following equation:

WQV = [(P)(Rv)(A)]/12, where

P= rainfall depth in inches and is equal to 1.0 inches Rv=volumetric runoff coefficient = 0.05 + 0.009(I) A=area in acres I=percent impervious cover

In addition, a minimum WQv of 0.2 inches per acre shall be met at sites or in drainage areas that have less than 15% impervious cover. The WQv is required to be controlled only for the specific project and not for off-site areas.

17.4.5.2 Recharge Volume

The recharge volume is a fraction of the WQv and is dependent on the pre-evelopment soil hydrologic group. It is based upon the following equation:

Rev=[(S)(Rv)(A)]/12, where

S=soil specific recharge factor in inches (0.38, 0.26, 0.13, or 0.07 for A, B, C, or D soils, respectively)

Rv=volumetric runoff coefficient = 0.05 + 0.009(I)

A=area in acres
I=percent impervious cover

Per the Manual "(t)he recharge volume is considered part of the total WQv that must be provided at a site and can be achieved either by a structural practice (e.g., infiltration, bioretention), a nonstructural practice (e.g., buffers, disconnection of rooftops), or a combination of both."

We have designed structural practices (detention basins) with dead storage to meet both the recharge volume and water quality volume requirements

This analysis is presented in Attachment 17G

17.5 Soil Loss

As part of this design effort, the existing conditions were evaluated for potential soil loss. The method of evaluation is the Universal Soil Loss Equation (USLE):

A = RK(LS)CP (tons/acre/year), where

A = Annual soil loss (tons/acre/year)

R = rainfall and runoff erosivity factor

K = soil erodibility

LS = slope length and steepness factor

C = cover-management factor

P = practice factor

per the USEPA guidance document titled "Evaluating Cover Systems for Solid and Hazardous Waste," 1982.

Based upon the soil erosion potential of the modeled conditions, the USLE calculations indicate that, with the existing Site topography and soil types, the potential for soil erosion can be reduced by maintaining a good stand of vegetation (i.e. >75% cover) on the existing clayey cover soils. The potential soil losses for the modeled, well vegetated existing conditions was approximately 1.86 tons/acre/year for the maximum inclination location (see Attachment 17G). This is consistent with the USEPA recommended guidance value of less than 2 tons/acre/year (USEPA, 1982).

17.6 Conclusion

The post-construction peak discharge rates for the 25-year and 100-year storm events is less than peak discharge rates under existing conditions.

Condition	25-year, 24-hour storm event Qout (cfs)	100-year, 24-hour storm event Qout (cfs)
Existing (prior to landfill construction)	466.73	973.07
Proposed (after closure)	309.43	718.42
Proposed < Existing??	Yes	Yes
% Reduction	34	26

ATTACHMENT 17A

Design Storm Selection

Subject: Design Storm Rainfall Depth						
Job No. 2018-3854	Made by: RP	Date 07-04-20				
Ref.	Checked by: VEF	Sheet 1 of 2				

Reviewed by PGS 08/27/2021

Objective: To determine the rainfall depth associated with the design storms.

Design Approach and Assumptions:

One of the requirements of COMAR 26.04.07 and 40 CFR 257 is the management of surface water runon from upgradient sources and the management of stormwater runoff from landfills. 40 CFR 257 and 258 list requirements for coal-combustion residual and municipal solid waste facilities. 40 CFR 258.26 (a) specifically requires

- "(1) A run-on control system to prevent flow onto the active portion of the landfill during the peak discharge from a 25-year storm;
- (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm."

As this is a Rubble Waste facility, these federal requirements are not applicable. However, they are relevant and appropriate. Thus, surface water/stormwater runoff controls at the Chesapeake Terrace Rubble Landfill were designed for the 25-year, 24 hour storm event.

In light of the increased intensity of rainfall events and record rainfall in 2018, for due diligence, the stormwater management features will also be evaluated for the 100, year 24-hour storm event

Review of the available literature to determine the rainfall associated with each storm event:

Source	25-year, 24 hour storm event Rainfall (inches)	100 Year, 24-hour storm even Rainfall (inches)		
Anne Arundel County Design Manual (inches)	5.9	7.4		
MD Stormwater Manual 2009	N/A	6.2		
NOAA Atlas 14	6.2	8.5		

Conclusions:

Use the rainfall depths shaded in blue for the design storms.

e. Time of Concentration

The methods described in the latest version of TR-55 shall be used to compute time of concentration in each sub-area. The maximum length of overland flow shall be 200 feet.

f. Reach Routing

Reach routing shall be computed in accordance with procedures found in the latest TR-20 manual. Rating curves for representative cross-sections shall be derived using Manning's Equation for normal depth, or backwater computations from HEC-2.

g. Structure Routing

The TR-20 storage-indication routing shall be used for structure routing. Provide a schematic diagram for the TR-20 run. A sketch of the device's controls shall be included in the design computations with performance curves plotted.

h. Rainfall

The following rainfall depths shall be used in hydrologic computations:

	24 Hour - Type II
Frequency	Storm Rainfall
1 year	2.7"
2 year	3.3"
5 year	4.3**
10 year	5.2"
25 year	5.9"
50 year	6.5"
100 year	7.4"

Free Board Hydrograph Storm (NRCS National Engineering Handbook)

Antecedent Moisture Condition (AMC) II and the NRCS Type II Rainfall Distribution shall be used for all design analysis.

D. Construction Drawings

1. Stormwater Management Plans

a. Review Submittals

The owner shall make the following submittals to PACE for review:

Published: 01/01 Revised:

Chapter

2.0

Unified Stormwater Sizing Criteria

Table 2.2 Rainfall Depths Associated with the 1,2,10 and 100-year, 24-hour Storm Events

County	Rainfall Depth							
County	1 yr - 24 hr	2 yr-24 hr	10 yr-24 hr	100 yr-24 hr				
Allegany	2.4 inches	2.9 inches	4.5 inches	6.2 inches				
Anne Arundel	2.7	3.3	5.2	7.4				
Baltimore	2.6	3.2	5.1	7.1				
Calvert	2.8	3.4	5.3	7,6				
Caroline	2.8	3.4	5.3	7.6				
Carroll	2.5	3.1	5.0	7.1				
Cecil	2.7	3.3	5.1	7.3				
Charles	2.7	3.3	5.3	7.5				
Dorchester	2.8	3.4	5.4	7.8				
Frederick	2.5	3.1	5.0	7.0				
Garrett	2.4	2.8	4.3	5.9				
Harford	2.6	3.2	5.1	7.2				
Howard	2.6	3.2	5.1	7.2				
Kent	2.7	3.3	5.2	7.4				
Montgomery	2.6	3.2	5.1	7.2				
Prince George's	2.7	3.3	5.3	7.4				
Queen Anne's	2.7	3.3	5.3	7.5				
St. Mary's	2.8	3.4	5,4	7.7				
Somerset	2.9	3.5	5.6	8.1				
Talbot	2.8	3.4	5.3	7.6				
Washington	2.5	3.0	4.8	6.7				
Wicomico	2.9	3.5	5.6	7.9				
Worcester	3.0	3.6	5.6	8.1				

NOAA Atlas 14, Volume 2, Version 3 Location name: Odenton, Maryland, USA* Latitude: 39.0389°, Longitude: -76.7264° Elevation: 65.6 ft**

89.0389°, Longitude: -76.7264°
Elevation: 65.6 ft**
*source: ESRI Maps
**source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

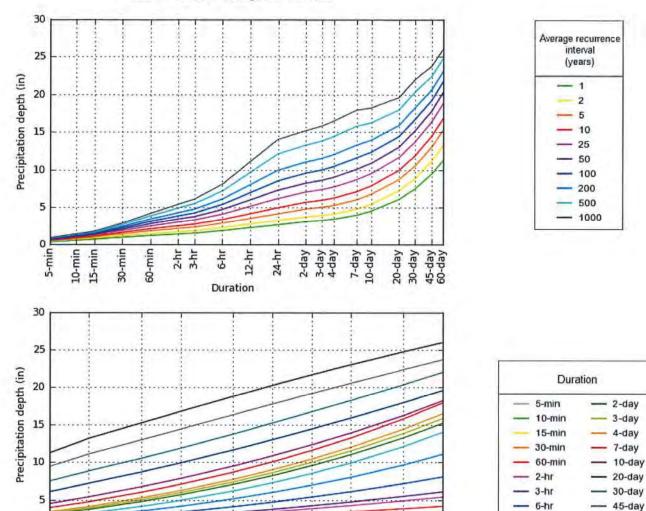
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

Duration				Averag	ge recurrent	e interval (y	ears)			
	1	2	5	10	25	50	100	200	500	1000
5-min	0.347	0.415	0.494	0.552	0.624	0.677	0.730	0.780	0.843	0.892
	(0.315-0.382)	(0.377-0.457)	(0.447-0.545)	(0.499-0.608)	(0.560-0.688)	(0.605-0.748)	(0.649-0.808)	(0.689-0.867)	(0.737-0.944)	(0.773-1.00
10-min	0.555	0.664	0.791	0.882	0.994	1.08	1.16	1.24	1.33	1.40
	(0.503-0.611)	(0.602-0.731)	(0.717-0.872)	(0.797-0.972)	(0.892-1.10)	(0.964-1.19)	(1.03-1.28)	(1.09-1.38)	(1.17-1.49)	(1.22-1.58
15-min	0.693	0.835	1.00	1,12	1.26	1.37	1.47	1.56	1.68	1.76
	(0.629-0.763)	(0.757-0.919)	(0.906-1.10)	(1.01-1.23)	(1.13-1.39)	(1.22-1.51)	(1.30-1.62)	(1.38-1.74)	(1.47-1.88)	(1.53-1.99
30-min	0.950	1.15	1.42	1.62	1.87	2.06	2.25	2.43	2.67	2.85
	(0.862-1.05)	(1.05-1.27)	(1.29-1.57)	(1.46-1.78)	(1.68-2.06)	(1.84-2.27)	(2.00-2.49)	(2.15-2.70)	(2.33-2.99)	(2.48-3.21
60-min	1.19	1.45	1.82	2.11	2.49	2.79	3.09	3.41	3.83	4.17
	(1.08-1.31)	(1.31-1.59)	(1.65-2.01)	(1.90-2.32)	(2.23-2.74)	(2.49-3.08)	(2.75-3.42)	(3.01-3.79)	(3.35-4.29)	(3.61-4.69
2-hr	1.40	1.71	2.16	2.51	3.01	3.41	3.83	4.26	4.89	5.38
	(1.27-1.55)	(1.55-1.88)	(1.96-2.38)	(2.27-2.77)	(2.71-3.31)	(3.05-3.75)	(3.40-4.22)	(3.76-4.72)	(4.25-5.45)	(4.64-6.05
3-hr	1.52	1.84	2.34	2.73	3,28	3.74	4.22	4.74	5.47	6.07
	(1.38-1.67)	(1.67-2.04)	(2.12-2.58)	(2.46-3.01)	(2.94-3.62)	(3.33-4.13)	(3.73-4.67)	(4.14-5.26)	(4.72-6.11)	(5.17-6.83
6-hr	1.87	2.27	2.87	3.36	4.08	4.70	5.37	6.09	7.16	8.06
	(1.71-2.07)	(2.06-2.51)	(2.60-3.17)	(3.03-3.71)	(3.65-4.51)	(4.17-5.19)	(4.71-5.95)	(5.29-6.78)	(6.11-8.04)	(6.78-9.11
12-hr	2.28	2.75	3.50	4.14	5.12	5.98	6.94	8.01	9,64	11.1
	(2.05-2.56)	(2.48-3.09)	(3.14-3.93)	(3.70-4.64)	(4.52-5.74)	(5,23-6.71)	(5.98-7.80)	(6.81-9.04)	(8.01-11.0)	(9.02-12,6
24-hr	2.65	3.20	4.12	4.92	6.16	7.26	8.50	9.92	12.1	14.0
	(2.41-2.93)	(2.92-3.55)	(3.75-4.56)	(4.46-5.44)	(5.53-6.77)	(6.47-7.95)	(7.50-9.28)	(8.65-10.8)	(10.4-13.1)	(11.8-15.1
2-day	3.07	3.71	4.76	5.67	7.03	8.22	9.54	11.0	13,3	15.2
	(2.79-3.39)	(3.38-4.10)	(4.33-5.26)	(5.13-6.25)	(6.32-7.72)	(7.34-9.01)	(8.45-10.4)	(9.66-12.1)	(11.4-14.5)	(12.9-16.6
3-day	3.23	3.91	5.01	5.95	7.37	8.61	9.98	11.5	13.8	15.8
	(2.94-3.56)	(3.57-4.31)	(4.56-5.52)	(5.40-6.55)	(6.65-8.08)	(7.71-9.42)	(8.87-10.9)	(10.1-12.6)	(12.0-15.1)	(13.6-17.3
4-day	3.39	4.10	5.25	6.24	7.71	8.99	10.4	12.0	14.4	16,5
	(3.10-3.74)	(3.76-4.53)	(4.80-5.78)	(5.68-6.85)	(6.97-8.45)	(8.08-9.83)	(9.29-11.4)	(10.6-13.1)	(12.5-15.7)	(14.2-18.0
7-day	3.94 (3.61-4.32)	4.74 (4.35-5.21)	5.99 (5.49-6.57)	7.07 (6.46-7.73)	8.67 (7.87-9.46)	10.0 (9.07-11.0)	11.6 (10.4-12.6)	13.3 (11.8-14.4)	15.8 (13.8-17.2)	17,9 (15.6-19.6
10-day	4.49	5.39	6.73	7.85	9.48	10.8	12.3	13.9	16.2	18.2
	(4.13-4.89)	(4.97-5.87)	(6.19-7:33)	(7.20-8.54)	(8.66-10.3)	(9.86-11.8)	(11.1-13.3)	(12.5-15.1)	(14.4-17.6)	(16.0-19.8
20-day	6.05	7.20	8.70	9.92	11.6	13.0	14.4	15.9	18.0	19.6
	(5.62-6.52)	(6.69-7.76)	(8.08-9.37)	(9.19-10.7)	(10.7-12.5)	(11.9-14.0)	(13.2-15.5)	(14.5-17.1)	(16.2-19.3)	(17.6-21.1
30-day	7.48	8.84	10.5	11.9	13.7	15.2	16.7	18.3	20.4	22.0
	(6.97-8.02)	(8.26-9.49)	(9.81-11.3)	(11.1-12.7)	(12.7-14.7)	(14.1-16.3)	(15.4-17.9)	(16.8-19.6)	(18.6-21.9)	(19.9-23.7
45-day	9.40	11.1	13.0	14.4	16.3	17.8	19.2	20.6	22.4	23.7
	(8.83-10.0)	(10.4-11.8)	(12.2-13.8)	(13.5-15.3)	(15.3-17.3)	(16.6-18.9)	(17.9-20.4)	(19.1-21.9)	(20.7-23.9)	(21.8-25.4
60-day	11.2	13.2	15.2	16.8	18.8	20.3	21.7	23.0	24.8	26.0
	(10.6-11.9)	(12.4-14.0)	(14.3-16.1)	(15.8-17.8)	(17.6-19.9)	(19.0-21.4)	(20.3-23.0)	(21.5-24.4)	(23.0-26.3)	(24.1-27.6

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 39.0389°, Longitude: -76.7264°

NOAA Atlas 14, Volume 2, Version 3

01

Created (GMT): Tue Mar 12 16:20:25 2019

500

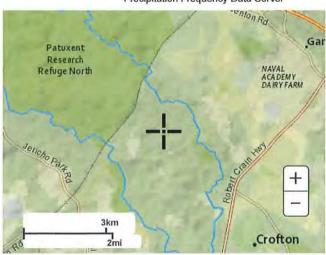
1000

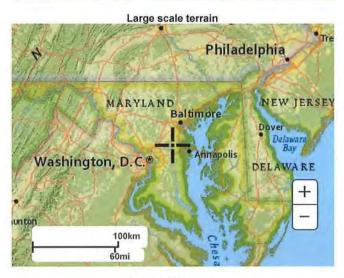
12-hr

24-hr

60-day

Back to Top

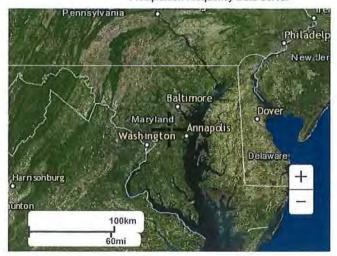

100


200

Maps & aerials

Small scale terrain

Average recurrence interval (years)



Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: HDSC Questions@noaa.gov

Disclaimer

ATTACHMENT 17B

Existing Conditions

Subject: Stormwater Management – Existing Conditions						
Job No. 2018-3854	Made by: RP	Date 07-15-20				
Ref.	Checked by: VERIS	Sheet 1 of 1				

Reviewed by PGS 08/27/2021

Objective: The objective of this analysis is to estimate the existing conditions stormwater runoff at the discharge points which align with the future stormwater management basin locations.

Design Approach and Assumptions:

Use HydroCad, a computer software which implements the principles of TR-55 and TR-20 for larger drainage areas. The input data for each is as follows:

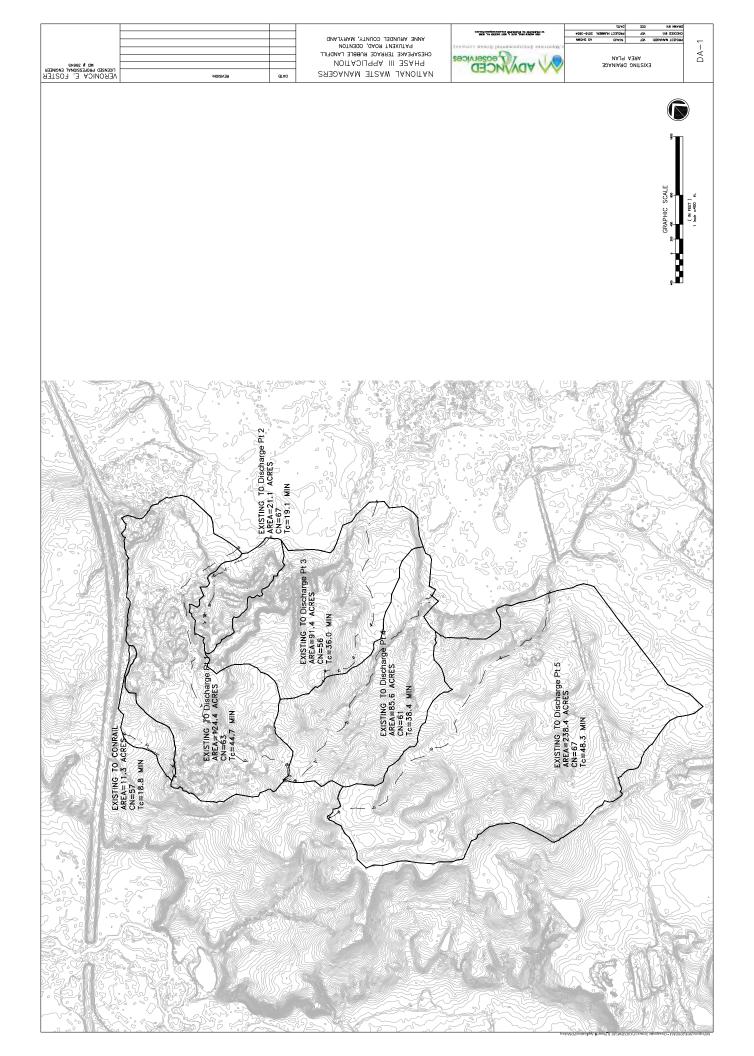
- Drainage areas determine the contributing drainage area to the discharge location based upon the topographic data of the area. Use the "area" function in AutoCAD to find the area of the drainage area boundary.
- 2) Based on the soils types and the vegetative cover, determine the areas of multiple soil types and cover conditions in each drainage area. Aerial photographs visible through GoogleEarth along with pictures of the site taken by team members were used to review the vegetative cover. Calculate a "weighed" curve number. HYDroCAD actual does this calculation for you.
- Determine the time of concentration for water to flow from the longest distance (in time) from the outlet. Measure the length and slope of the tc flow path and the surface condition.
- 4) Although the site is location along the eastern seaboard, this is a Type II storm event because the DelMarVa peninsula shields it from the affects of the ocean.
- 5) Determine the peak flows for the 25-year, 24 hour (5.9 inches of rain) and 100 year, 24 hour (8.5 inches of rain) storm events.

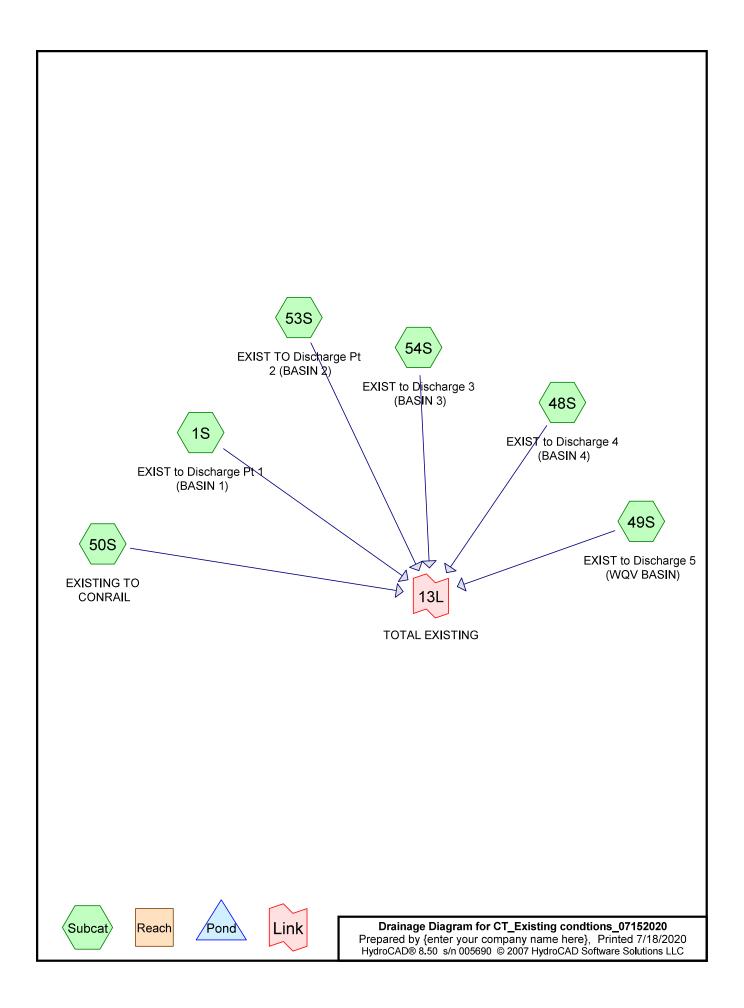
Calculations:

Attached is a summary table of the input data to the HydroCAD program and the computer printout for evaluation for the design storm events.

Conclusions:

A summary of the discharge from the site under existing conditions is provided in the table below.


Discharge Point	25 year, 24 hour Peak Flow (cfs)	100 year, 24 hour Peak Flow (cfs)
1	178.07	358.75
2	58.42	109.65
3	105.36	244.80
4	124.88	259.87
Subtotal	466.73	973.07
Conrail	22.09	48.87
East Entrance (incl WQv area)	389.64	739.58
TOTAL	810.82	1,629.55


References:

HydroCAD, V8.5.

EXISTING CONDITIONS

CONNAIL							0	()	1				
			SO	SOILS						SOILS	S		
	TOTAL AREA	A	8	2	٥	TOTAL CHECK		TOTAL AREA	A	3	٥		TOTAL CHECK
ONSITE							ONSITE						
WOODS	492,929	165,243	0	327,686	15	0 492,929	WOODS		994,213	0	1,781,386	294,248	3,069,847
OFFSITE							OFFSITE						
WOODS							woods						0
RA							RA		682,280	54,406	81,022	92,696	910,404
R-2							R-2						0
TOTAL	492,529					492,929	TOTAL						3,980,251
ischarge	Discharge Pt 1 (BASIN 1)						Discharge	Discharge Pt 4 (BASIN 4)	4)				
			SO	SOILS						SOILS	S		
	TOTAL AREA	A	8	C	٥	TOTAL CHECK		TOTAL AREA	A	J	0		TOTAL CHECK
ONSITE							ONSITE						
WOODS	4,652,379	743,289	0	3,361,697	547,393	93 4,652,379	WOODS	636,520	78,295	22,838	416,198	119,189	636,520
OFFSITE	768,602						OFFSITE	3,093,191					
WOODS		37,872	0	44,000	11,366	93,238	woods						0
RA		381,005	59,413	234,946		0 675,364	RA		911,186	281,741	75,531	0	1,268,458
R-2		0	0	0		0	R-2		545,259	676,106	321,526	281,842	1,824,732
TOTAL	5,420,581					5,420,981	TOTAL	3,729,710					3,729,710
ischarge	Discharge Pt 2 (BASIN 2)						Discharge	Discharge Pt 5 (WQv FACILITY)	ACILITY)				
			SO	SOILS	1					SOILS	S		
	TOTAL AREA	A	8	v	D	TOTAL CHECK		TOTAL AREA	A	U	٥		TOTAL CHECK
ONSITE							ONSITE						
WOODS		80,990		739,718	99,116	16 919,825	WOODS	131,621	29,870	71,699	30,052	0	131,621
OFFSITE							OFFSITE	10,252,576					
700						0	TOD		95,827	91,822	223,317	39,093	450,060
RA						9	RA						0
R-2						3	R-2		3,240,207	2,914,445	2,748,808	950'668	9,802,517
TOTAL	0					919.825	TOTAL	10.384.197					10 384 198

Printed 7/18/2020 Page 2

Area Listing (all nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
48.023	30	Woods, Good, HSG A (1S,48S,49S,50S,53S,54S)	
2.200	30	Woods, Good, HSG A (OFFSITE LOD) (49S)	
0.869	30	Woods, Good, HSG A (OFFSITE) (1S)	
45.328	42	RA ZONING A SOILS (1S,48S,54S)	
86.902	50	R2 ZONING, A SOILS (48S,49S)	
2.170	55	Woods, Good, HSG B (48S,49S)	
2.108	55	Woods, Good, HSG B (OFFSITE LOD) (49S)	
9.081	64	RA ZONING B SOILS (1S,48S,54S)	
82.427	70	R2 ZONING, B SOILS (48S,49S)	
152.819	70	Woods, Good, HSG C (1S,48S,49S,50S,53S,54S)	
5.127	70	Woods, Good, HSG C (OFFSITE LOD) (49S)	
1.010	70	Woods, Good, HSG C (OFFSITE) (1S)	
8.988	76	RA ZONING C SOILS (1S,48S,54S)	
24.332	77	Woods, Good, HSG D (1S,48S,53S,54S)	
0.897	77	Woods, Good, HSG D (OFFSITE LOD) (49S)	
0.261	77	Woods, Good, HSG D (OFFSITE) (1S)	
70.485	80	R2 ZONING, C SOILS (48S,49S)	
2.128	82	RA ZONING D SOILS (54S)	
27.109	85	R2 ZONING, D SOILS (48S,49S)	
572.264		TOTAL AREA	

CT_Existing condtions_07152020

Prepared by {enter your company name here}

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Goup	Numbers
51.092	HSG A	1S, 48S, 49S, 50S, 53S, 54S
4.278	HSG B	48S, 49S
158.956	HSG C	1S, 48S, 49S, 50S, 53S, 54S
25.490	HSG D	1S, 48S, 49S, 53S, 54S
332.448	Other	1S, 48S, 49S, 54S
572.264		TOTAL AREA

CT Existing condtions 07152020

Type II 24-hr 25-YR Rainfall=5.90" Printed 7/18/2020

Prepared by {enter your company name here} HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: EXIST to Discharge Pt Runoff Area=124.449 ac 0.00% Impervious Runoff Depth=2.11" Flow Length=4,561' Tc=39.7 min CN=63 Runoff=178.07 cfs 21.850 af

Subcatchment 48S: EXIST to Discharge 4 Runoff Area=85.621 ac 0.00% Impervious Runoff Depth=1.94" Flow Length=3,617' Tc=33.5 min CN=61 Runoff=124.88 cfs 13.834 af

Subcatchment 49S: EXIST to Discharge Runoff Area=10,384,180 sf 0.00% Impervious Runoff Depth=2.45" Flow Length=4,899' Tc=42.5 min CN=67 Runoff=389.64 cfs 48.767 af

Subcatchment 50S: EXISTING TO

Runoff Area=492,925 sf 0.00% Impervious Runoff Depth=1.62"
Flow Length=983' Tc=14.9 min CN=57 Runoff=22.09 cfs 1.524 af

Subcatchment 53S: EXIST TO Discharge Pt Runoff Area=21.116 ac 0.00% Impervious Runoff Depth=2.45" Flow Length=1,689' Tc=19.1 min CN=67 Runoff=58.42 cfs 4.320 af

Subcatchment 54S: EXIST to Discharge Runoff Area=3,980,251 sf 0.00% Impervious Runoff Depth=1.54" Flow Length=3,050' Tc=30.5 min CN=56 Runoff=105.36 cfs 11.708 af

Link 13L: TOTAL EXISTINGInflow=810.82 cfs 102.002 af
Primary=810.82 cfs 102.002 af

Total Runoff Area = 572.264 ac Runoff Volume = 102.002 af Average Runoff Depth = 2.14" 100.00% Pervious = 572.264 ac 0.00% Impervious = 0.000 ac

39.7

4,561 Total

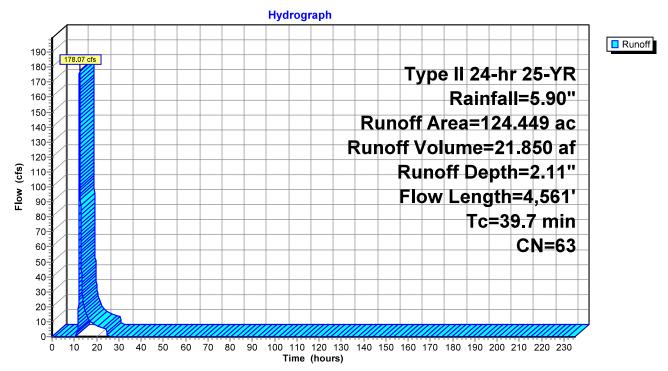
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment 1S: EXIST to Discharge Pt 1 (BASIN 1)

Runoff = 178.07 cfs @ 12.39 hrs, Volume= 21.850 af, Depth= 2.11"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"


_	Area	(ac)	CN	Desc	ription			
	17.	064	30	Woo	ds, Good,	HSG A		
	77.	174	70	Woo	ds, Good,	HSG C		
	12.	566	77		ds, Good,			
*	0.	869	30	Woo	ds, Good,	HSG A	(OF	FFSITE)
*	1.	010	70		ds, Good,			
*	0.	261	77	Woo	ds, Good,	HSG D	(OI	FFSITE)
*	8.	747	42		ONING A			
*		364	64		ONING B			
*	5.	394	76	RA Z	ONING C	SOILS		
	124.	449	63	Weig	hted Aver	age		
	124.	449		Perv	ious Area			
	Тс	Lengt		Slope	Velocity	Capaci	•	Description
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cf	s)	
	13.8	10	0.0	0600	0.12			Sheet Flow, A-B
								Woods: Light underbrush n= 0.400 P2= 3.20"
	3.8	73	5 0.0	0400	3.22			Shallow Concentrated Flow, B-C
								Unpaved Kv= 16.1 fps
	4.4	59	7 0.0	0200	2.28			Shallow Concentrated Flow, C-D
								Unpaved Kv= 16.1 fps
	0.4	149	9 0.	1300	5.80			Shallow Concentrated Flow, D-E
								Unpaved Kv= 16.1 fps
	1.6	26	2 0.0	0300	2.79			Shallow Concentrated Flow, E-F
	45.7	0.74			0.00	4.4		Unpaved Kv= 16.1 fps
	15.7	2,71	8 U.	0200	2.88	14.4	1 U	Trap/Vee/Rect Channel Flow, F-G
								Bot.W=5.00' D=0.50' Z= 10.0 '/' Top.W=15.00'
								n= 0.035 Earth, dense weeds

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 6

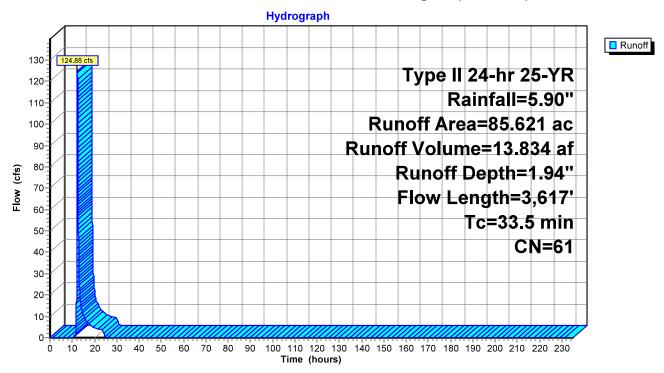
Subcatchment 1S: EXIST to Discharge Pt 1 (BASIN 1)

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment 48S: EXIST to Discharge 4 (BASIN 4)

Runoff = 124.88 cfs @ 12.32 hrs, Volume= 13.834 af, Depth= 1.94"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Area	(ac) (ON Des	cription		
		797		ods, Good,	HSG A	
		524		ods, Good,		
	9.	555		ods, Good,		
	2.	736	77 Woo	ods, Good,	HSG D	
*	20.	918	42 RA 2	ZONING A	SOILS	
*	6.	468	64 RA 2	ZONING B	SOILS	
*	1.	734	76 RA 2	ZONING C	SOILS	
*	12.	517	50 R2 Z	ZONING, A	SOILS	
*	15.	521	70 R2 Z	ZONING, E	SOILS	
*	7.	381		ZONING, C		
*	6.	470	85 R2 Z	ZONING, D	SOILS	
	85.	621	61 Wei	ghted Aver	age	
	85.	621	Per	ious Area	_	
	Тс	Length		Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.8	100	0.0600	0.12		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	3.4	466	0.0200	2.28		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	3.1	728	0.0600	3.94		Shallow Concentrated Flow, C-D
						Unpaved Kv= 16.1 fps
	13.2	2,323	0.0200	2.94	16.17	, , , , , , , , , , , , , , , , , , ,
						Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'
						n= 0.035 Earth, dense weeds
	33.5	3,617	Total			

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 8

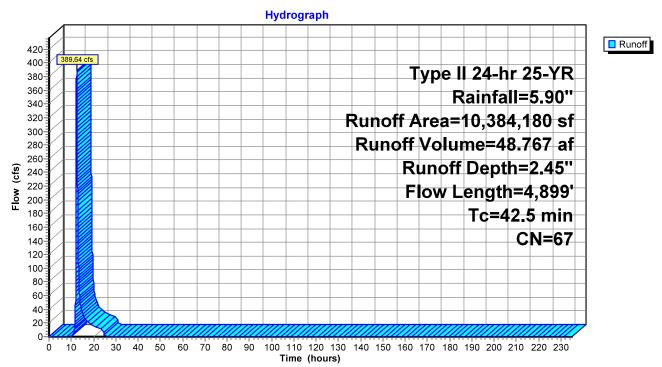
Subcatchment 48S: EXIST to Discharge 4 (BASIN 4)

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 9

Summary for Subcatchment 49S: EXIST to Discharge 5 (WQV BASIN)

Runoff = 389.64 cfs @ 12.42 hrs, Volume= 48.767 af, Depth= 2.45"

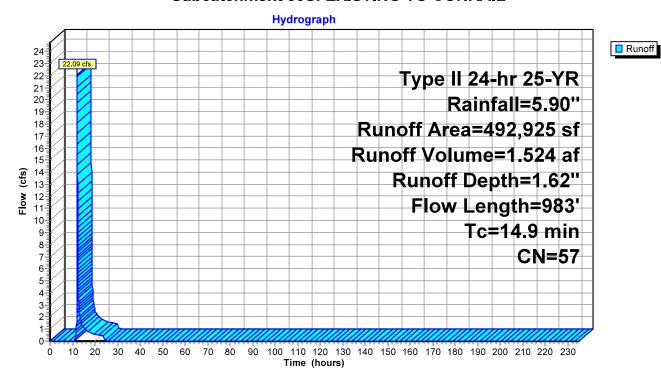

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Aı	rea (sf)	CN E	escription						
		29,882	30 V	Voods, Go	od, HSG A					
		71,700	55 V	Voods, Go	od, HSG B					
		30,056	70 V	Voods, Go	od, HSG C					
*		95,832	30 V	Voods, Go	od, HSG A	(OFFSITE LOD)				
*		91,824	55 V	Voods, Go	od, HSG B	(OFFSITE LOD)				
*	2	23,332	70 V	Voods, Go	od, HSG C	(OFFSITE LOD)				
*		39,073				(OFFSITE LOD)				
*	3,2	40,211		R2 ZONING, A SOILS						
*	2,9	14,425		R2 ZONING, B SOILS						
*	,	48,810			B, C SOILS					
*	8	99,035	85 F	R2 ZONING	G, D SOILS					
	10,3	84,180								
	10,3	84,180	F	ervious Ar	ea					
	Tc	Length	Slope	Velocity		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	16.3	100	0.0400	0.10		Sheet Flow, A-B				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	4.1	558	0.0200	2.28		Shallow Concentrated Flow, B-C				
						Unpaved Kv= 16.1 fps				
	5.1	1,221	0.0400	3.98	17.89	Trap/Vee/Rect Channel Flow, C-D				
						Bot.W=4.00' D=0.50' Z= 10.0 '/' Top.W=14.00'				
						n= 0.035 Earth, dense weeds				
	9.8	1,723	0.0200	2.94	16.17	Trap/Vee/Rect Channel Flow, D-E				
						Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'				
						n= 0.035 Earth, dense weeds				
	7.2	1,297	0.0200	2.99	17.96	Trap/Vee/Rect Channel Flow, E-F				
						Bot.W=7.00' D=0.50' Z= 10.0 '/' Top.W=17.00'				
_						n= 0.035 Earth, dense weeds				
	42.5	4,899	Total							

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 10

Subcatchment 49S: EXIST to Discharge 5 (WQV BASIN)


Summary for Subcatchment 50S: EXISTING TO CONRAIL

Runoff = 22.09 cfs @ 12.08 hrs, Volume= 1.524 af, Depth= 1.62"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

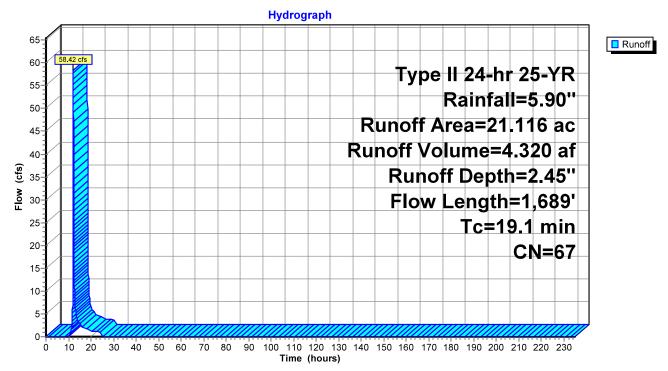
	Aı	ea (sf)	CN	Description		
		65,223		Woods, Go	•	
	3	27,702	70	Woods, Go	od, HSG C	
	4	92,925	57	Weighted A	verage	
	4	92,925		Pervious Ar	ea	
	Tc	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.9	100	0.1100	0.15		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.9	527	0.0800	4.55		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	2.1	356	0.0300	2.79		Shallow Concentrated Flow, C-D
						Unpaved Kv= 16.1 fps
•	14.9	983	Total			

Subcatchment 50S: EXISTING TO CONRAIL

Page 12

around de discourse de la contraction de la cont

Summary for Subcatchment 53S: EXIST TO Discharge Pt 2 (BASIN 2)


Runoff = 58.42 cfs @ 12.12 hrs, Volume= 4.320 af, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

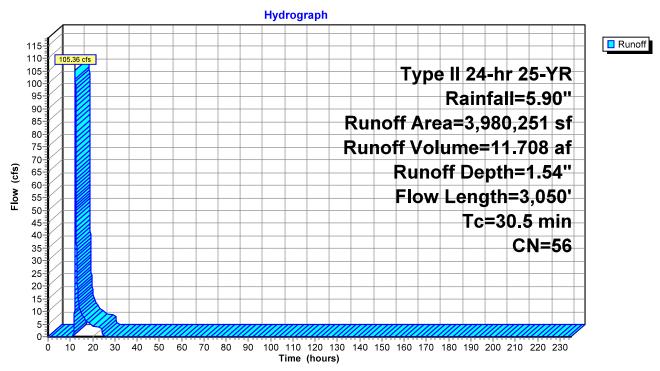
Area	(ac) C	N Desc	cription		
1.	859 3	0 Woo	ds, Good,	HSG A	
16.	982 7		ds, Good,		
2.	275 7		ds, Good,		
21.	116 6	7 Wei	ghted Aver	age	
	116	•	ious Area	3 -	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
10.2	100	0.1300	0.16	, ,	Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.20"
0.1	26	0.1900	7.02		Shallow Concentrated Flow, B-C
					Unpaved Kv= 16.1 fps
0.8	152	0.0400	3.22		Shallow Concentrated Flow, C-D
					Unpaved Kv= 16.1 fps
3.4	451	0.0100	2.24	9.52	Trap/Vee/Rect Channel Flow, D-E
					Bot.W=6.00' D=0.50' Z= 5.0 '/' Top.W=11.00'
					n= 0.035 Earth, dense weeds
0.5	192	0.0800	6.33	26.91	Trap/Vee/Rect Channel Flow, E-F
					Bot.W=6.00' D=0.50' Z= 5.0 '/' Top.W=11.00'
					n= 0.035 Earth, dense weeds
4.1	768	0.0200	3.12	35.10	Trap/Vee/Rect Channel Flow, F-G
					Bot.W=15.00' D=0.50' Z= 15.0 '/' Top.W=30.00'
					n= 0.035 Earth, dense weeds
19.1	1,689	Total			

Page 13

Subcatchment 53S: EXIST TO Discharge Pt 2 (BASIN 2)

Page 14

Summary for Subcatchment 54S: EXIST to Discharge 3 (BASIN 3)


Runoff = 105.36 cfs @ 12.30 hrs, Volume= 11.708 af, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

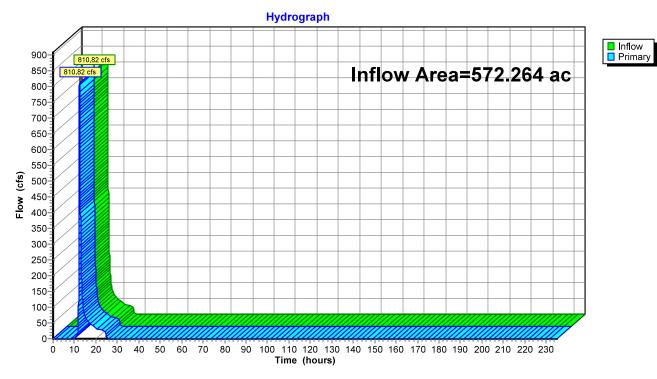
_	Ar	ea (sf)	CN	Description			
	9	94,213	30	Woods, Go	od, HSG A		
	1,7	81,386	70	Woods, Go	od, HSG C		
	2	94,248	77	Woods, Go	od, HSG D		
*	6	82,280	42	ra zoninc	A SOILS		
*		54,406		ra zoninc			
*		81,022		ra zoninc			
*		92,696	82	RA ZONINO	D SOILS		
	3,9	80,251	56	Weighted A	verage		
	3,9	80,251		Pervious Ar	ea		
	Тс	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		_
	14.9	100	0.0500	0.11		Sheet Flow, A-B	
						Woods: Light underbrush n= 0.400 P2= 3.20"	
	0.7						
	0.7	247	0.1400	6.02		Shallow Concentrated Flow, B-C	
						Unpaved Kv= 16.1 fps	
	1.3	247 328	0.1400			Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D	
	1.3	328	0.0700	4.26		Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps	
				4.26		Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E	
	1.3 3.4	328 576	0.0700	4.26 2.79	10.17	Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps	
	1.3	328	0.0700	4.26 2.79	16.17	Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F	
	1.3 3.4	328 576	0.0700	4.26 2.79	16.17	Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'	
	1.3 3.4	328 576	0.0700	4.26 2.79	16.17	Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F	_

Page 15

Subcatchment 54S: EXIST to Discharge 3 (BASIN 3)

Page 16

Summary for Link 13L: TOTAL EXISTING


Inflow Area = 572.264 ac, 0.00% Impervious, Inflow Depth = 2.14" for 25-YR event

Inflow = 810.82 cfs @ 12.36 hrs, Volume= 102.002 af

Primary = 810.82 cfs @ 12.36 hrs, Volume= 102.002 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 13L: TOTAL EXISTING

CT Existing condtions 07152020

Type II 24-hr 100-YR NOAA Rainfall=8.50"

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

<u> Page 17</u>

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: EXIST to Discharge Pt Runoff Area=124.449 ac 0.00% Impervious Runoff Depth=4.07" Flow Length=4,561' Tc=39.7 min CN=63 Runoff=358.75 cfs 42.165 af

Subcatchment 48S: EXIST to Discharge 4 Runoff Area=85.621 ac 0.00% Impervious Runoff Depth=3.83" Flow Length=3,617' Tc=33.5 min CN=61 Runoff=259.87 cfs 27.329 af

Subcatchment 49S: EXIST to Discharge Runoff Area=10,384,180 sf 0.00% Impervious Runoff Depth=4.54" Flow Length=4,899' Tc=42.5 min CN=67 Runoff=739.58 cfs 90.182 af

Subcatchment 50S: EXISTING TO

Runoff Area=492,925 sf 0.00% Impervious Runoff Depth=3.36"
Flow Length=983' Tc=14.9 min CN=57 Runoff=48.87 cfs 3.171 af

Subcatchment 53S: EXIST TO Discharge Pt Runoff Area=21.116 ac 0.00% Impervious Runoff Depth=4.54" Flow Length=1,689' Tc=19.1 min CN=67 Runoff=109.65 cfs 7.988 af

Subcatchment 54S: EXIST to Discharge Runoff Area=3,980,251 sf 0.00% Impervious Runoff Depth=3.25" Flow Length=3,050' Tc=30.5 min CN=56 Runoff=244.80 cfs 24.722 af

Link 13L: TOTAL EXISTINGInflow=1,629.55 cfs 195.557 af
Primary=1,629.55 cfs 195.557 af

Total Runoff Area = 572.264 ac Runoff Volume = 195.557 af Average Runoff Depth = 4.10" 100.00% Pervious = 572.264 ac 0.00% Impervious = 0.000 ac

39.7

4,561 Total

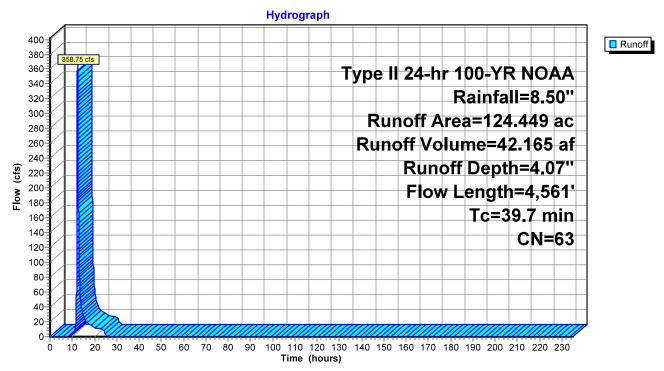
Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 18

Summary for Subcatchment 1S: EXIST to Discharge Pt 1 (BASIN 1)

Runoff = 358.75 cfs @ 12.39 hrs, Volume= 42.165 af, Depth= 4.07"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area	(ac) C	N Des	cription				
	17.	064 3	30 Woo	ds, Good,	HSG A			
	77.	174	70 Woo	ds, Good,	HSG C			
	12.	566	77 Woo	ds, Good,	HSG D			
*	0.	869 3	30 Woo	ds, Good,	HSG A	(OF	FFSITE)	
*	1.	010	70 Woo	ds, Good,	HSG C	(OF	FFSITE)	
*	0.	261		ods, Good,		(OF	FFSITE)	
*	8.	747		ZONING A				
*				ZONING B				
*	5.	394	76 RAZ	ZONING C	SOILS			
	124.	449 (33 Wei	ghted Avei	age			
	124.	449	Perv	ious Area				
	Тс	Length	Slope	Velocity	Capaci		Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cf	<u>s)</u>		
	13.8	100	0.0600	0.12			Sheet Flow, A-B	
							Woods: Light underbrush n= 0.400 P2= 3.20"	
	3.8	735	0.0400	3.22			Shallow Concentrated Flow, B-C	
							Unpaved Kv= 16.1 fps	
	4.4	597	0.0200	2.28			Shallow Concentrated Flow, C-D	
							Unpaved Kv= 16.1 fps	
	0.4	149	0.1300	5.80			Shallow Concentrated Flow, D-E	
							Unpaved Kv= 16.1 fps	
	1.6	262	0.0300	2.79			Shallow Concentrated Flow, E-F	
	4	0.740	0.0000	0.00	4.4		Unpaved Kv= 16.1 fps	
	15.7	2,718	0.0200	2.88	14.4	łO	Trap/Vee/Rect Channel Flow, F-G	
							Bot.W=5.00' D=0.50' Z= 10.0 '/' Top.W=15.00'	
							n= 0.035 Earth, dense weeds	

Printed 7/18/2020

<u>Page 19</u>

Subcatchment 1S: EXIST to Discharge Pt 1 (BASIN 1)

CT_Existing condtions_07152020

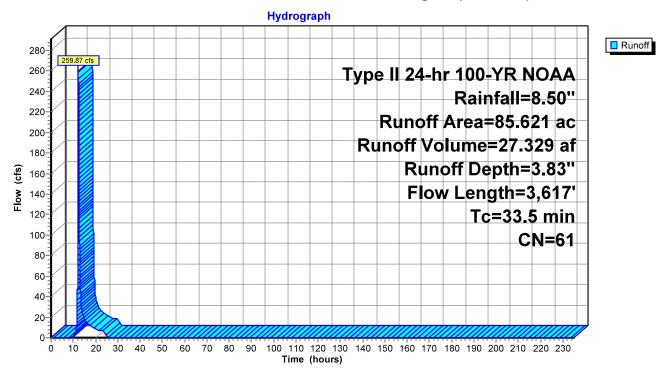
Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 20

Summary for Subcatchment 48S: EXIST to Discharge 4 (BASIN 4)

Runoff = 259.87 cfs @ 12.29 hrs, Volume= 27.329 af, Depth= 3.83"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area	(ac) C	N Desc	cription		
		` '		ds, Good,	HSG A	
				ds, Good,		
	9.			ds, Good,		
				ds, Good,		
*	20.	918	42 RA 2	ZONING Á	SOILS	
*	6.	468	64 RA 2	ZONING B	SOILS	
*	1.	734	76 RA 2	ZONING C	SOILS	
*	12.	517	50 R2 Z	ZONING, A	SOILS	
*	15.	521	70 R2 Z	ZONING, E	SOILS	
*	7.	381		Zoning, C		
*	6.	470	35 R2 Z	<u>ZONING, E</u>	SOILS	
	85.	621	31 Weig	ghted Aver	age	
	85.	621	Perv	ious Area	_	
	Тс	Length	Slope	Velocity	•	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.8	100	0.0600	0.12		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	3.4	466	0.0200	2.28		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	3.1	728	0.0600	3.94		Shallow Concentrated Flow, C-D
						Unpaved Kv= 16.1 fps
	13.2	2,323	0.0200	2.94	16.17	
						Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'
						n= 0.035 Earth, dense weeds
	33.5	3,617	Total			

Printed 7/18/2020

Page 21

Subcatchment 48S: EXIST to Discharge 4 (BASIN 4)

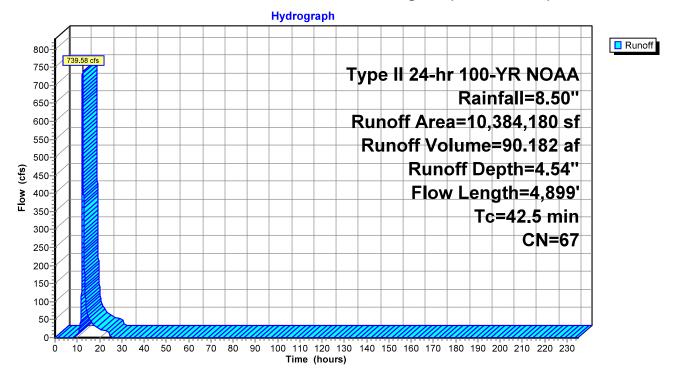
Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 22

Summary for Subcatchment 49S: EXIST to Discharge 5 (WQV BASIN)

Runoff = 739.58 cfs @ 12.42 hrs, Volume= 90.182 af, Depth= 4.54"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Aı	rea (sf)	CN E	escription		
		29,882	30 V	Voods, Go	od, HSG A	
		71,700	55 V	Voods, Go	od, HSG B	
		30,056	70 V	Voods, Go	od, HSG C	
*		95,832	30 V	Voods, Go	od, HSG A	(OFFSITE LOD)
*		91,824	55 V	Voods, Go	od, HSG B	(OFFSITE LOD)
*	2	23,332	70 V	Voods, Go	od, HSG C	(OFFSITE LOD)
*		39,073				(OFFSITE LOD)
*	3,2	40,211			B, A SOILS	
*	2,9	14,425			B, B SOILS	
*	,	48,810			B, C SOILS	
*	8	99,035	85 F	R2 ZONING	G, D SOILS	
	10,3	84,180		Veighted A		
	10,3	84,180	F	ervious Ar	ea	
	Tc	Length	Slope	Velocity		Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.3	100	0.0400	0.10		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	4.1	558	0.0200	2.28		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	5.1	1,221	0.0400	3.98	17.89	Trap/Vee/Rect Channel Flow, C-D
						Bot.W=4.00' D=0.50' Z= 10.0 '/' Top.W=14.00'
						n= 0.035 Earth, dense weeds
	9.8	1,723	0.0200	2.94	16.17	Trap/Vee/Rect Channel Flow, D-E
						Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'
						n= 0.035 Earth, dense weeds
	7.2	1,297	0.0200	2.99	17.96	Trap/Vee/Rect Channel Flow, E-F
						Bot.W=7.00' D=0.50' Z= 10.0 '/' Top.W=17.00'
_						n= 0.035 Earth, dense weeds
	42.5	4,899	Total			

Printed 7/18/2020

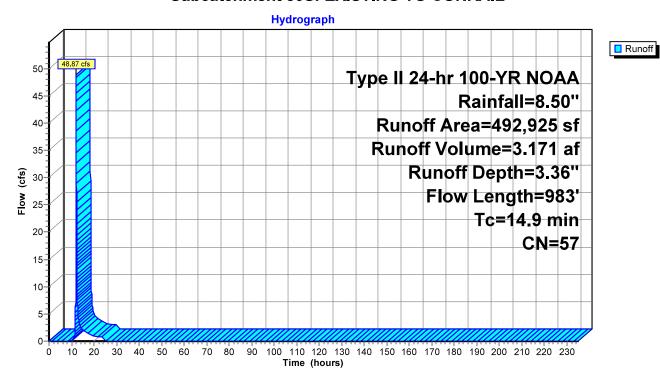
Page 23

Subcatchment 49S: EXIST to Discharge 5 (WQV BASIN)

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 24


Summary for Subcatchment 50S: EXISTING TO CONRAIL

Runoff = 48.87 cfs @ 12.07 hrs, Volume= 3.171 af, Depth= 3.36"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

_	Aı	rea (sf)	CN	Description		
	1	65,223	30	Woods, Go	od, HSG A	
_	3	27,702	70	Woods, Go	od, HSG C	
	4	92,925	57	Weighted A	verage	
	4	92,925		Pervious Ar	ea	
	_					
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.9	100	0.1100	0.15		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.9	527	0.0800	4.55		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	2.1	356	0.0300	2.79		Shallow Concentrated Flow, C-D
_						Unpaved Kv= 16.1 fps
_	14 9	983	Total			

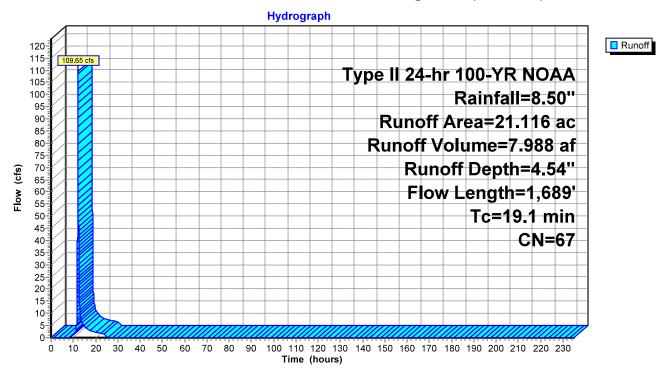
Subcatchment 50S: EXISTING TO CONRAIL

Printed 7/18/2020

Page 25

Summary for Subcatchment 53S: EXIST TO Discharge Pt 2 (BASIN 2)

Runoff = 109.65 cfs @ 12.12 hrs, Volume= 7.988 af, Depth= 4.54"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Area	(ac) C	N Desc	cription		
1.	859 3	0 Woo	ds, Good,	HSG A	
16.	982 7		ds, Good,		
2.	275 7		ds, Good,		
21.	116 6	7 Wei	ghted Aver	age	
	116	•	ious Area	3 -	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
10.2	100	0.1300	0.16	, ,	Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.20"
0.1	26	0.1900	7.02		Shallow Concentrated Flow, B-C
					Unpaved Kv= 16.1 fps
0.8	152	0.0400	3.22		Shallow Concentrated Flow, C-D
					Unpaved Kv= 16.1 fps
3.4	451	0.0100	2.24	9.52	Trap/Vee/Rect Channel Flow, D-E
					Bot.W=6.00' D=0.50' Z= 5.0 '/' Top.W=11.00'
					n= 0.035 Earth, dense weeds
0.5	192	0.0800	6.33	26.91	Trap/Vee/Rect Channel Flow, E-F
					Bot.W=6.00' D=0.50' Z= 5.0 '/' Top.W=11.00'
					n= 0.035 Earth, dense weeds
4.1	768	0.0200	3.12	35.10	Trap/Vee/Rect Channel Flow, F-G
					Bot.W=15.00' D=0.50' Z= 15.0 '/' Top.W=30.00'
					n= 0.035 Earth, dense weeds
19.1	1,689	Total			

Printed 7/18/2020

Page 26

Subcatchment 53S: EXIST TO Discharge Pt 2 (BASIN 2)

CT_Existing condtions_07152020

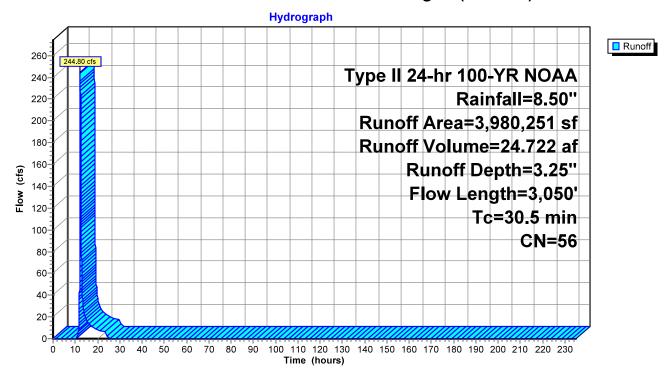
Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 27

Summary for Subcatchment 54S: EXIST to Discharge 3 (BASIN 3)

Runoff = 244.80 cfs @ 12.27 hrs, Volume= 24.722 af, Depth= 3.25"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Α	rea (sf)	CN	Description		
	9	94,213	30	Woods, Go	od, HSG A	
	1,7	81,386	70	Woods, Go	od, HSG C	
	2	94,248	77	Woods, Go	od, HSG D	
*	6	82,280	42	RA ZONING	G A SOILS	
*		54,406		RA ZONINO		
*		81,022		RA ZONINO		
*		92,696		RA ZONINO	GD SOILS	
		80,251		Weighted A		
	3,9	80,251		Pervious Ar	ea	
	_		01			
	Tc	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft)		(cfs)	
	14.9	100	0.0500	0.11		Sheet Flow, A-B
	0.7	247	0.4400	6.00		Woods: Light underbrush n= 0.400 P2= 3.20"
	0.7	247	0.1400	6.02		Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
	1.3	328	0.0700	4.26		Shallow Concentrated Flow, C-D
	1.5	320	0.0700	4.20		Unpaved Kv= 16.1 fps
	3.4	576	0.0300	2.79		Shallow Concentrated Flow, D-E
	0.4	070	0.0000	2.70		Unpaved Kv= 16.1 fps
	10.2	1,799	0.0200	2.94	16.17	Trap/Vee/Rect Channel Flow, E-F
		.,	0.000			Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'
						n= 0.035 Earth, dense weeds
	30.5	3,050	Total			

Printed 7/18/2020

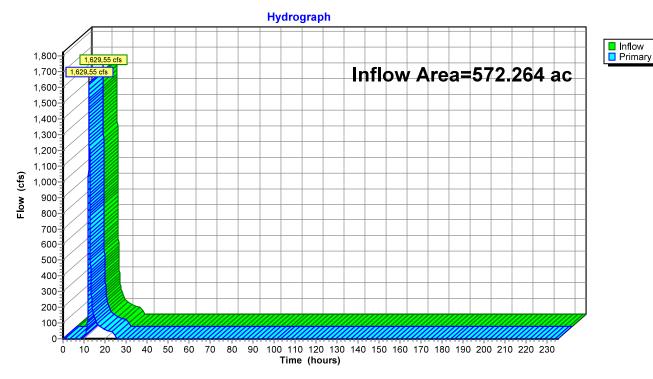
Page 28

Subcatchment 54S: EXIST to Discharge 3 (BASIN 3)

Printed 7/18/2020

Page 29

Summary for Link 13L: TOTAL EXISTING


Inflow Area = 572.264 ac, 0.00% Impervious, Inflow Depth = 4.10" for 100-YR NOAA event

Inflow = 1,629.55 cfs @ 12.33 hrs, Volume= 195.557 af

Primary = 1,629.55 cfs @ 12.33 hrs, Volume= 195.557 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 13L: TOTAL EXISTING

ATTACHMENT 17C

Proposed Basin Routing

Subject: Stormwater Management – Proposed Basin Routing							
Job No. 2018-3854	Made by: RP	Date 07-15-20					
Ref. Checked by: VEF 1 of 2							

Reviewed by PGS 08/27/2021

Objective: The objective of this analysis is to estimate the proposed conditions – determining the stormwater runoff from the proposed Landfill and routing the runoff through stormwater management basin locations.

Design Approach and Assumptions:

Use HydroCad, a computer software which implements the principles of TR-55 and TR-20 for larger drainage areas. The input data for each is as follows:

- Drainage areas determine the contributing drainage area to the discharge location based upon the topographic data of the area. Use the "area" function in AutoCAD to find the area of the drainage area boundary.
- 2) Based on the proposed soils types and the vegetative cover, determine the areas of soil types and cover conditions in each drainage area. Calculate a "weighed" curve number. HydroCAD actually does this calculation based upon data entry.
- Determine the time of concentration for water to flow from the longest distance (in time) from the outlet. Measure the length and slope of the tc flow path and the surface condition.
- 4) Although the site is location along the eastern seaboard, this is a Type II storm event because the DelMarVa peninsula shields it from the affects of the ocean.
- 5) Determine the peak flows for the 25-year, 24 hour (5.9 inches of rain) and 100 year, 24 hour (8.5 inches of rain) storm events.
- 6) Based on the proposed Basin configuration, routing the contributing inflow from the contributing drainage areas through the basins to determine whether they are adequately sized.

Calculations:

Attached is a summary table of the input data to the HydroCAD program and the computer printout for evaluation for the design storm events.

References:

- HydroCAD, V8.5.
- Advanced GeoServices Corp, Calculations entitled "Stormwater management Existing Conditions," dated July 15, 2020.

Subject: Stormwater Management – Proposed Basin Routing						
Job No. 2018-3854	Made by: RP	Date 07-15-20				
Ref.	Checked by: VEF	Sheet 2 of 2				

Reviewed by PGS 08/27/2021

Conclusions:

A summary of the inflow and the proposed Basin area provided in the table below.

Feature	Basin No. 1	Basin No. 2	Basin No. 3	Basin No. 4	WQv
Bottom of Basin (ft MSL)	79.0	72.0	72.0	76.5	88.0
Top of Wet Storage (ft MSL)	81.0	74.0	74.0	78.5	N/A
Invert of low flow Orifice (ft MSL)	81.0	74.0	74.0	78.5	88.0
Size of low flow Orifice (inches)	9	8	6	6	3
Elevation of Riser (ft MSL)	84.5	77.0	77.0	83.6	89.5
Dimensions of Riser (ft x ft)	3 x 6.5	3 x 6.5	3 x 6.5	7 x 10	4 x 4
Shape of Riser	rectangle	rectangle	rectangle	rectangle	rectangle
Invert of Emergency Spillway (ft MSL)	90.0	78.0	78.5	88.15	90.8
Width of Emergency Spillway (ft)	250	45	100	90	20
25 year	,24 hour sto	rm event rou	ting		
Peak Qin (cfs)	386.46	49.6	195.44	186.05	19.12
Peak Qout (cfs)	140.81	3.75	54.16	95.11	15.6
Max Water Surface Elev (ft MSL)	86.60	77.06	77.89	84.49	90.11
Riser Engaged?	Yes	Yes	Yes	Yes	Yes
Emergency Spillway Engaged?	No	No	No	No	No
% Reduction	64	92	72	49	18
	Total Qout = 3	309.43 cfs			
100 year	,24 hour sto	rm event rou	uting		
Peak Qin (cfs)	672.36	110.04	314.99	399.01	32.48
Peak Qout (cfs)	255.13	58.51	193.46	184.84	26.48
Max Water Surface Elev (ft MSL)	90.22	77.93	79.10	88.13	91.10
Riser Engaged?	Yes	Yes	Yes	Yes	Yes
Emergency Spillway Engaged?	Yes	No	Yes	No	Yes
% Reduction	62	47	59	54	18
	Total Qout = 7	718.42 cfs			

Comparing the proposed condition with existing conditions peak flow rates:

Condition	25 year, 24 hour storm event Qout (cfs)	100 year, 24 hour storm event Qout (cfs)
Existing (prior to landfill construction)	466.73	973.07
Proposed (after closure)	309.43	718.42
Proposed < Existing??	Yes	Yes
% Reduction	34	26

While the total volume of stormwater runoff is higher under the proposed conditions, the stormwater management basins hold the water and release it from site at a slower pace, mitigating flows such that they are even lower than under existing conditions.

CHESAPEAKE TERRACE BASIN 1 DEWATERING TIME

Rating Table						
	Elevation H (height from dewater hole) Q					
	(ft.)	(ft.)	(cfs)			
Crest of Riser	84.5	5.5	5.100			
	84	5	3.957			
	83	4	2.700			
	82	3	1.670			
Bottom Orifice	79	0	0			

		Dewatering Time		
Elevation	Volume	∆Storage	Discharge	time
(ft)	(ft ³)	(ft ³)	(cfs)	(hours)
84.5	427,754		5.100	
		67,005		4.11
84	360,749		3.957	
		131,071		10.94
83	229,678		2.700	
		117,882		14.99
82	111,796		1.670	
		111,796		37.19
79	0		0.000	
	1		Total=	67.23 hours
			=	2.8 days

Reviewed by PGS 08/27/2021

CHESAPEAKE TERRACE BASIN 2 DEWATERING TIME

Rating Table						
Elevation H (height from dewater hole) Q						
	(ft.)	(ft.)	(cfs)			
Crest of Riser	77	3	2.740			
	76.4	2.4	2.420			
	76	2	2.170			
	75	1	1.370			
Bottom Orifice	74	0	0			

	Dewatering Time					
Elevation	Volume	∆Storage	Discharge	time		
(ft)	(ft ³)	(ft ³)	(cfs)	(hours)		
77	77,190		2.740			
		18,841		2.03		
76.4	58,349		2.420			
		12,074		1.46		
76	46,275		2.170			
		24,499		3.84		
75	21,776		1.370			
		21,776		8.83		
74	0		0.000			
	Total= 16.16 hours					
			=	0.7 days		

Reviewed by PGS 08/27/2021

CHESAPEAKE TERRACE BASIN 3 DEWATERING TIME

Rating Table						
	Elevation H (height from dewater hole) Q					
	(ft.)	(ft.)	(cfs)			
Crest of Riser	77	3	1.570			
	76.4	2.4	1.390			
	76	2	1.250			
	75	1	0.820			
Bottom Orifice	74	0	0			

		Dewatering Time				
Elevation	Volume	∆Storage	Discharge	time		
(ft)	(ft ³)	(ft ³)	(cfs)	(hours)		
77	204,126		1.570			
		47,232		8.86		
76.4	156,894		1.390			
		30,661		6.45		
76	126,233		1.250			
		65,733		17.64		
75	60,500		0.820			
		60,500		40.99		
74	0		0.000			
	Total= 73.94 hours					
	= 3.1 days					

Reviewed by PGS 08/27/2021

CHESAPEAKE TERRACE BASIN 4 DEWATERING TIME

Rating Table						
Elevation H (height from dewater hole) Q						
	(ft.)	(ft.)	(cfs)			
Crest of Riser	83.6	5.1	2.080			
	82.1	3.6	1.730			
	80	1.5	1.060			
	79.1	0.6	0.560			
Bottom Orifice	78.5	0	0			

	Dewatering Time					
Elevation	Volume	∆Storage	Discharge	time		
(ft)	(ft ³)	(ft ³)	(cfs)	(hours)		
83.6	163,820		2.080			
		56,574		8.25		
82.1	107,246		1.730			
		69,211		13.78		
80	38,035		1.060			
		23,687		8.12		
79.1	14,348		0.560			
		14,348		14.23		
78.5	0		0.000			
	Total= 44.38 hours					
	= 1.8 days					

Reviewed by PGS 08/27/2021

CHESAPEAKE TERRACE WQV DEWATERING TIME

Rating Table						
	Elevation H (height from dewater hole) Q					
	(ft.)	(ft.)	(cfs)			
Crest of Riser	89.5	1.5	0.280			
	89.2	1.2	0.250			
	88.7	0.7	0.180			
	88.4	0.4	0.120			
Bottom Orifice	88	0	0			

	Dewatering Time					
Elevation	Volume	∆Storage	Discharge	time		
(ft)	(ft ³)	(ft ³)	(cfs)	(hours)		
89.5	5,400		0.280			
		1,166		1.22		
89.2	4,234		0.250			
		1,848		2.39		
88.7	2,386		0.180			
		1,051		1.95		
88.4	1,335		0.120			
		1,335		6.18		
88	0		0.000			
	Total= 11.74 hours					
			=	0.5 days		

BASIN 1

		so	ILS					
	Α	В	С	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE								16.52%
WOODS	332,365		131,028	25,995	489,387			0.00%
OPEN SPACE	411,144		669,712	274,313	1,355,168			73.99%
IMPERVIOUS	74,126	0	172,868	32,057	279,051	5.19%		9.49%
CAP	402,941		3,134,813	203,513	3,741,267		123.40	1.00
					0			
OFFSITE					0			
WOODS	33,629		51,548		85,177			
RA	403,214	103,642	214,775	55,609	777,240			
R-2					0			
TOTAL					6,727,291		6,727,291	

BASIN 2

		so	ILS					
	Α	В	С	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE								28.36%
WOODS	122,667		43,308	3,323	169,299			0.00%
OPEN SPACE	75,069		193,145		268,214			71.64%
IMPERVIOUS	12,756		39,104		51,859	14.30%		0.00%
CAP	15,027		27,590		42,617		8.33	1.00
					0			
OFFSITE					0			
WOODS					0			
RA	547,893	9,866	81,020	37,070	675,849			
R-2					0			
TOTAL					1,207,839		1,208,511	

BASIN 3

		SC	DILS					
	Α	В	С	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE								9.74%
WOODS					0			0.00%
OPEN SPACE	68,751		252,304	29,508	350,562			85.38%
IMPERVIOUS	9,226		110,479	19,790	139,495	7.74%		4.88%
CAP	97,612		1,176,328	38,616	1,312,556		41.38	1.00
					0			
OFFSITE					0			
WOODS					0			
RA					0			
R-2					0			
TOTAL					1,802,613		1,802,614	

BASIN 4

<u> </u>								
		sc	DILS					
	Α	В	C	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE								12.12%
WOODS	395,927	5,767	404,259		805,954			9.96%
OPEN SPACE	35,334	18,850	198,718	50,619	303,522			61.68%
IMPERVIOUS	7,436	16,314	18,955	6,703	49,407	14.00%		16.24%
CAP					0		8.10	1.00
					0			
OFFSITE					0			
WOODS					0			
RA	1,043,104	281,741	75,531		1,400,376			
R-2	692,547	599,476	322,638	281,842	1,896,503			
TOTAL					4,455,761		4,455,761	

wqv

		SC	ILS					
	Α	В	c	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE					0			0.00%
WOODS		9,223	6,232		15,455			57.83%
OPEN SPACE		20,644	16,961		37,605			42.17%
IMPERVIOUS		8,752	4,475		13,227	26.02%		0.00%
CAP					0		1.17	1.00
					0			
OFFSITE					0			
LOD					0			
RA					0			
R-2		65,742	18,740		84,482			
TOTAL					150,769		150,783	

UNMANAGED

		SC	ILS					
	Α	В	c	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE					0			29.30%
WOODS					0			7.34%
OPEN SPACE	40,015	9,812	68,391	16,061	134,279			52.49%
IMPERVIOUS	12,080	3,237	24,939	3,262	43,518	24.48%		10.87%
CAP					0		4.08	1.00
					0			
OFFSITE					0			
LOD					0			
RA					0			
R-2					0			
TOTAL					177,796			

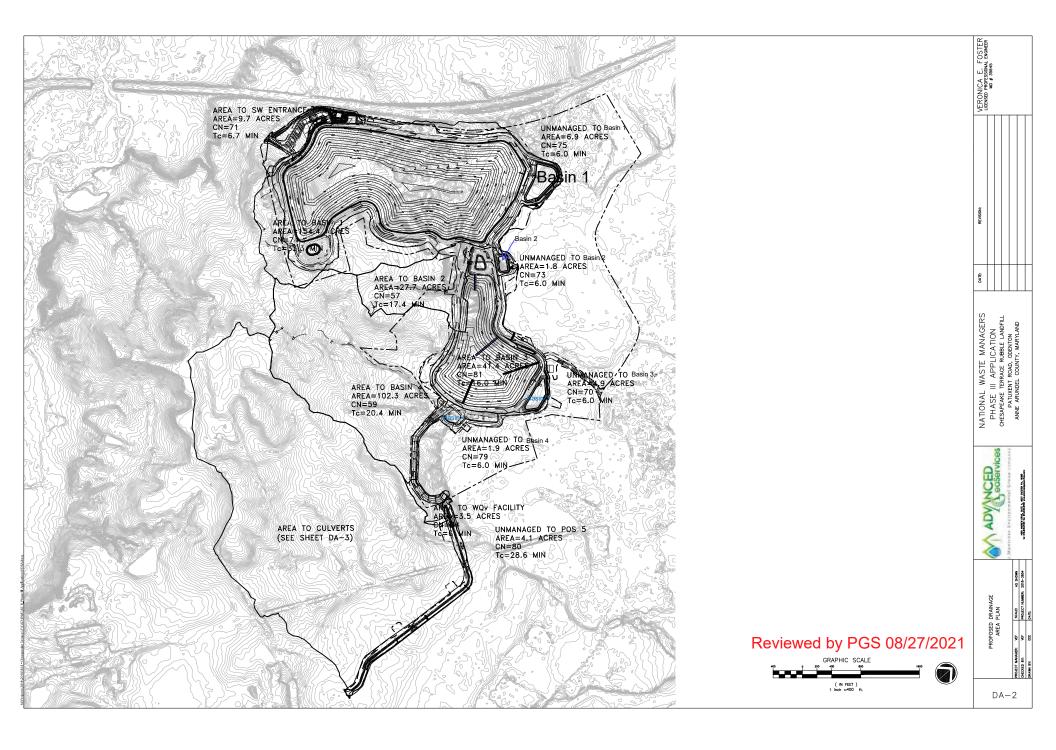
WQV + UNM

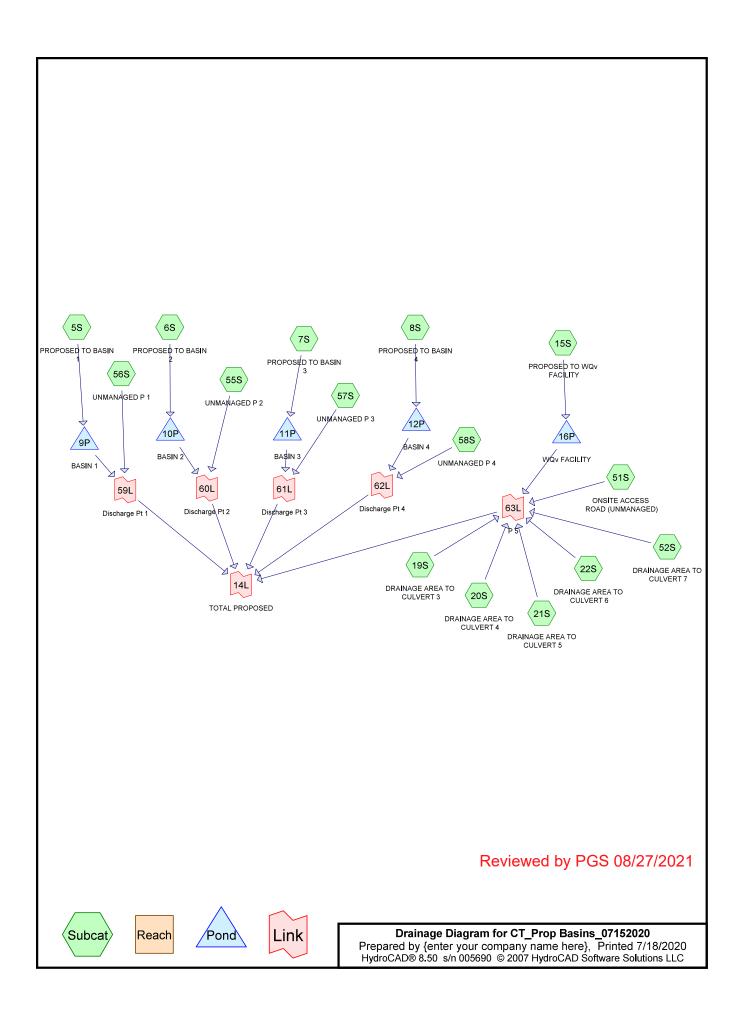
1101 : 0.11								
		sc	ILS					
	Α	В	c	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE					0			22.79%
WOODS	0	9,223	6,232	. 0	15,455			18.57%
OPEN SPACE	40,015	30,456	85,352	16,061	171,884			50.20%
IMPERVIOUS	12,080	11,989	29,414	3,262	56,745	24.82%		8.45%
CAP	0	0	0	0	0		5.25	1.00
	0	0	0	0	0			
OFFSITE	0	0	0	0	0			
LOD	0	0	0	0	0			
RA	0	0	0	0	0			
R-2	0	65,742	18,740	0	84,482			
TOTAL	0	0	0	0	328,565			

UNMANAGED Discharge Pt 2

		SC	ILS					
	Α	В	c	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE					0			0.00%
WOODS	4,417		86,043	184,932	275,391			0.00%
OPEN SPACE			2,038	21,669	23,707			8.60%
IMPERVIOUS					0	0.00%		91.40%
CAP					0		0.54	1.00
OFFSITE								
LOD					0			
RA					0			
R-2					0			
TOTAL					299,098			

UNMANAGED Discharge Pt 2


		S	OILS					
	Α	В	С	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE					0			38.60%
WOODS			7,354	7,236	14,590			0.00%
OPEN SPACE	24,838		25,224	14,292	64,354			39.20%
IMPERVIOUS					0	0.00%		22.21%
CAP					0		1.48	1.00
OFFSITE								
LOD					0			
RA					0			
R-2					0			
TOTAL					78,944			


UNMANAGED Discharge Pt 3

		SC	DILS					
	Α	В	c	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE					0			24.12%
WOODS	25,681		11,227	20,676	57,584			0.00%
OPEN SPACE	37,410		32,984	84,713	155,107			21.27%
IMPERVIOUS					0	0.00%		54.62%
CAP					0		3.56	1.00
OFFSITE								
LOD					0			
RA					0			
R-2					0			
TOTAL					212,691			

UNMANAGED Discharge Pt 4

		sc	DILS					
	Α	В	С	D	TOTAL CHECK	% IMPERVIOUS	DISTURBED AREA	% SOIL TYPE IN DIST AREA
ONSITE					0			4.36%
WOODS					0			6.18%
OPEN SPACE	3,590	5,089	14,725	58,907	82,311			17.89%
IMPERVIOUS					0	0.00%		71.57%
CAP					0		1.89	1.00
OFFSITE								
LOD					0			
RA					0			
R-2					0			
TOTAL					82,311			

Printed 7/18/2020 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.691	30	Woods, Good, HSG A (56S,57S)
19.535	30	Woods, Good, HSG A (ONSITE) (5S,6S,8S)
0.772	30	Woods, Good, HSG A OFFSITE (5S)
21.835	42	RA ZONING A SOIL (5S,6S)
23.946	42	RA ZONING A SOILS (8S)
86.984	50	R-2 ZONING A SOILS (8S,20S,21S,22S,52S)
0.212	55	Woods, Good, HSG B (15S)
0.132	55	Woods, Good, HSG B (ONSITE) (8S)
0.660	61	>75% Grass cover, Good, HSG B (DISTURBED A) (20S,21S)
1.723	61	>75% Grass cover, Good, HSG B (ONSITE A SOIL) (6S)
9.439	61	>75% Grass cover, Good, HSG B (ONSITE A SOILS) (5S)
4.820	61	>75% Grass cover, Good, HSG B (ONSITE A) (7S,8S,51S,55S,57S,58S)
2.605	64	RA ZONING B SOIL (5S,6S)
6.468	64	RA ZONING B SOILS (8S)
78.284	70	R-2 ZONING B SOILS (8S,15S,19S,20S,21S,22S,52S)
2.545	70	Woods, Good, HSG C (15S,55S,56S,57S)
13.283	70	Woods, Good, HSG C (ONSITE) (5S,6S,8S)
1.183	70	Woods, Good, HSG C OFFSITE (5S)
1.472	74	>75% Grass cover, Good, HSG C (DISTURBED B) (19S,20S,21S)
1.249	74	>75% Grass cover, Good, HSG C (ONSITE B) (8S,15S,51S,58S)
6.791	76	RA ZONING C SOIL (5S,6S)
1.734	76	RA ZONING C SOILS (8S)
4.886	77	Woods, Good, HSG D (55S,56S,57S)
0.673	77	Woods, Good, HSG D (ONSITE) (5S,6S)
6.558	80	>75% Grass cover, Good, HSG D (7S,8S,20S,51S,55S,56S,57S,58S)
1.768	80	>75% Grass cover, Good, HSG D (DISTURBED C) (19S,20S,22S,52S)
0.201	80	>75% Grass cover, Good, HSG D (DISTURBED D) (52S)
4.434	80	>75% Grass cover, Good, HSG D (ONSITE C SOIL) (6S)
15.374	80	>75% Grass cover, Good, HSG D (ONSITE C SOILS) (5S)
14.034	80	>75% Grass cover, Good, HSG D (ONSITE C) (7S,8S,15S,51S,55S,56S,57S,58S)
6.297	80	>75% Grass cover, Good, HSG D (ONSITE D SOILS) (5S)
31.110	80	CAP (6S,7S)
85.888	80	CAP AREA (5S)
70.697	80	R-2 ZONING C SOILS (8S,15S,20S,21S,22S,52S)
2.128	82	RA ZONING D SOIL (5S,6S)
27.167	85	R-2 ZONING D SOILS (8S,20S,52S)
0.332	98	Paved parking & roofs (21S,22S)
0.953	98	Paved parking & roofs (ONSITE A) (6S,7S,8S,51S)
0.650	98	Paved parking & roofs (ONSITE B) (8S,15S,51S)
4.545	98	Paved parking & roofs (ONSITE C) (6S,7S,8S,15S,51S)
0.683	98	Paved parking & roofs (ONSITE D) (7S,8S,51S)

Printed 7/18/2020 Page 3

Area Listing (all nodes) (continued)

Area	CN	Description
 (acres)		(subcatchment-numbers)
1.702	98	Paved parking & roofs A ONSITE (5S)
0.050	98	Paved parking & roofs A SOILS (20S)
0.081	98	Paved parking & roofs B SOILS (19S,20S)
3.969	98	Paved parking & roofs C ONSITE (5S)
0.353	98	Paved parking & roofs C SOILS (19S,20S,52S)
0.736	98	Paved parking & roofs D ONSITE (5S)
0.080	98	Paved parking & roofs D SOILS (20S,52S)
571.713		TOTAL AREA

Printed 7/18/2020 Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Goup	Numbers
20.998	HSG A	5S, 6S, 8S, 56S, 57S
16.986	HSG B	5S, 6S, 7S, 8S, 15S, 20S, 21S, 51S, 55S, 57S, 58S
19.731	HSG C	5S, 6S, 8S, 15S, 19S, 20S, 21S, 51S, 55S, 56S, 57S, 58S
54.225	HSG D	5S, 6S, 7S, 8S, 15S, 19S, 20S, 22S, 51S, 52S, 55S, 56S, 57S, 58S
459.772	Other	5S, 6S, 7S, 8S, 15S, 19S, 20S, 21S, 22S, 51S, 52S
571.713		TOTAL AREA

CT_Prop Basins_07152020

Type II 24-hr 25-YR Rainfall=5.90" Printed 7/18/2020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 5S: PROPOSED TO BASIN Runoff Area=154.439 ac 4.15% Impervious Runoff Depth=3.10" Flow Length=5,552' Tc=33.3 min CN=74 Runoff=386.46 cfs 39.909 af

Subcatchment 6S: PROPOSED TORunoff Area=1,207,838 sf 4.29% Impervious Runoff Depth=1.62"
Flow Length=2.643' Tc=17.4 min CN=57 Runoff=49.60 cfs 3.733 af

Subcatchment 7S: PROPOSED TO

Runoff Area=1,802,614 sf 7.74% Impervious Runoff Depth=3.79"

Flow Length=2,398' Tc=16.0 min CN=81 Runoff=195.44 cfs 13.079 af

Subcatchment 8S: PROPOSED TORunoff Area=4,455,761 sf 1.11% Impervious Runoff Depth=1.78"
Flow Length=3,075' Tc=20.4 min CN=59 Runoff=186.05 cfs 15.131 af

Subcatchment 15S: PROPOSED TO WQv Runoff Area=150,762 sf 8.78% Impervious Runoff Depth=3.10"

Tc=6.0 min CN=74 Runoff=19.12 cfs 0.894 af

Subcatchment 19S: DRAINAGE AREA TO Runoff Area=0.556 ac 8.99% Impervious Runoff Depth=3.10"

Tc=6.0 min CN=74 Runoff=3.07 cfs 0.144 af

Subcatchment 20S: DRAINAGE AREA TO Runoff Area=96.992 ac 0.16% Impervious Runoff Depth=2.54" Flow Length=4,594' Tc=30.4 min CN=68 Runoff=208.26 cfs 20.565 af

Subcatchment 21S: DRAINAGE AREA TO Runoff Area=12.910 ac 1.93% Impervious Runoff Depth=2.28" Flow Length=1,337' Tc=13.2 min CN=65 Runoff=39.97 cfs 2.452 af

Subcatchment 22S: DRAINAGE AREA TO Runoff Area=3,681,542 sf 0.10% Impervious Runoff Depth=2.37"

Flow Length=3,556' Tc=26.2 min CN=66 Runoff=184.60 cfs 16.666 af

Subcatchment 51S: ONSITE ACCESS Runoff Area=177,797 sf 24.48% Impervious Runoff Depth=3.69"

Tc=28.6 min CN=80 Runoff=13.49 cfs 1.255 af

Subcatchment 52S: DRAINAGE AREA TO Runoff Area=27.906 ac 1.27% Impervious Runoff Depth=3.29" Flow Length=1,920' Tc=28.5 min CN=76 Runoff=82.38 cfs 7.660 af

Subcatchment 55S: UNMANAGED P 2 Runoff Area=78,944 sf 0.00% Impervious Runoff Depth=3.01" Tc=6.0 min CN=73 Runoff=9.72 cfs 0.454 af

Subcatchment 56S: UNMANAGED P 1 Runoff Area=299,039 sf 0.00% Impervious Runoff Depth=3.20"

Tc=6.0 min CN=75 Runoff=39.01 cfs 1.829 af

Subcatchment 57S: UNMANAGED P 3 Runoff Area=212,691 sf 0.00% Impervious Runoff Depth=2.73" Tc=6.0 min CN=70 Runoff=23.85 cfs 1.109 af

Subcatchment 58S: UNMANAGED P 4 Runoff Area=82,311 sf 0.00% Impervious Runoff Depth=3.59"

Tc=6.0 min CN=79 Runoff=11.91 cfs 0.565 af

Pond 9P: BASIN 1 Peak Elev=86.60' Storage=718,710 cf Inflow=386.46 cfs 39.909 af Outflow=140.81 cfs 39.794 af

CT	Pron	Rasins	07152020
O I	FIUD	Dasilis	01 132020

Type II 24-hr 25-YR Rainfall=5.90"

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 6

Pond 10P: BASIN 2 Peak Elev=77.06' Storage=79,209 cf Inflow=49.60 cfs 3.733 af

Outflow=3.75 cfs 3.729 af

Pond 11P: BASIN 3 Peak Elev=77.89' Storage=277,110 cf Inflow=195.44 cfs 13.079 af

Outflow=54.16 cfs 13.036 af

Pond 12P: BASIN 4 Peak Elev=84.49' Storage=200,499 cf Inflow=186.05 cfs 15.131 af

Outflow=95.11 cfs 15.125 af

Pond 16P: WQv FACILITY Peak Elev=90.11' Storage=7,923 cf Inflow=19.12 cfs 0.894 af

Outflow=15.60 cfs 0.894 af

Link 14L: TOTAL PROPOSED Inflow=638.18 cfs 125.279 af

Primary=638.18 cfs 125.279 af

Link 59L: Discharge Pt 1 Inflow=143.29 cfs 41.622 af

Primary=143.29 cfs 41.622 af

Link 60L: Discharge Pt 2 Inflow=10.19 cfs 4.183 af

Primary=10.19 cfs 4.183 af

Link 61L: Discharge Pt 3 Inflow=56.90 cfs 14.146 af

Primary=56.90 cfs 14.146 af

Link 62L: Discharge Pt 4 Inflow=96.41 cfs 15.691 af

Primary=96.41 cfs 15.691 af

Link 63L: P 5 Inflow=505.10 cfs 49.637 af

Primary=505.10 cfs 49.637 af

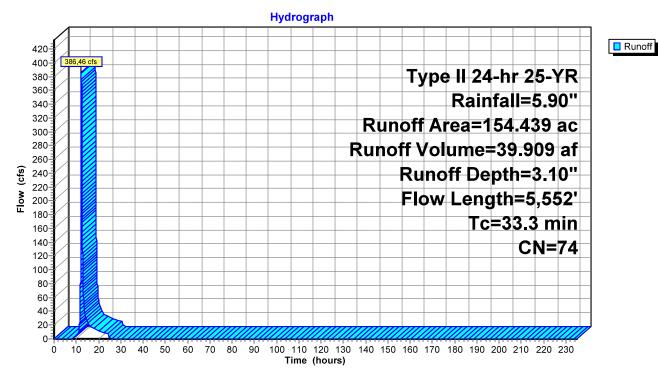
Total Runoff Area = 571.713 ac Runoff Volume = 125.447 af Average Runoff Depth = 2.63" 97.53% Pervious = 557.579 ac 2.47% Impervious = 14.133 ac

Page 7

Summary for Subcatchment 5S: PROPOSED TO BASIN 1

Runoff 386.46 cfs @ 12.28 hrs, Volume= 39.909 af, Depth= 3.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"


	Area	(ac) C	N Desc	cription						
*	7.	630 3	30 Woo	ds, Good,	HSG A (OI	NSITE)				
*	3.	008 7			HSG C (O					
*			77 Woods, Good, HSG D (ONSITE)							
*			61 >75% Grass cover, Good, HSG B (ONSITE A SOILS)							
*										
*	6.	297 8				, HSG D (ONSITE D SOILS)				
*					& roofs A					
*					& roofs C					
*					& roofs D (
*				AREA						
*					HSG A OF	FSITE				
*					HSG C OF					
*				ONING A						
*				ONING B						
*				ONING C						
*				ONING D						
	154.			ghted Aver						
	148			ious Area	uge					
		407		ervious Are	ea					
	٥.	107	mpc	71 11000 7 110	,					
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•				
	6.3	100	0.0600	0.26	, ,	Sheet Flow, A-B				
						Grass: Short n= 0.150 P2= 3.20"				
	1.2	295	0.0700	4.26		Shallow Concentrated Flow, B-C				
						Unpaved Kv= 16.1 fps				
	1.3	272	0.0200	3.44	32.28	Trap/Vee/Rect Channel Flow, C-D				
						Bot.W=16.00' D=0.50' Z= 6.0 & 5.0 '/' Top.W=21.50'				
						n= 0.035 Earth, dense weeds				
	6.5	1.025	0.0100	2.64	73.81	Trap/Vee/Rect Channel Flow, D-E				
		,				Bot.W=55.00' D=0.50' Z= 2.0 '/' Top.W=57.00'				
						n= 0.035 Earth, dense weeds				
	9.4	2.107	0.0200	3.73	104.38	Trap/Vee/Rect Channel Flow, E-F				
		_,				Bot.W=55.00' D=0.50' Z= 2.0 '/' Top.W=57.00'				
						n= 0.035 Earth, dense weeds				
	0.3	165	0.0050	7.89	55.74	Circular Channel (pipe), F-G				
						Diam= 36.0" Area= 7.1 sf Perim= 9.4' r= 0.75'				
						n= 0.011 Concrete pipe, straight & clean				
	1.1	380	0.0600	5.78	17.35	Trap/Vee/Rect Channel Flow, G-H				
			2.2000	51. 5		Bot.W=5.00' D=0.50' Z= 2.0 '/' Top.W=7.00'				
						n= 0.035 Earth, dense weeds				
	5.1	724	0.0100	2.36	7.08	Trap/Vee/Rect Channel Flow, H-I				
						Bot.W=5.00' D=0.50' Z= 2.0 '/' Top.W=7.00'				
						I I				

Printed 7/18/2020

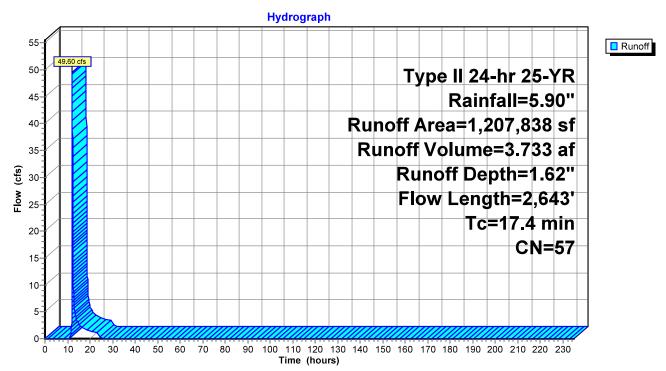
Page 8

n= 0.035	Earth, d	lense wee	eds		
1.9	376	0.0200	3.34	10.02	Trap/Vee/Rect Channel Flow, I-J
					Bot.W=5.00' D=0.50' Z= 2.0 '/' Top.W=7.00'
					n= 0.035 Earth, dense weeds
0.2	108	0.0050	10.33	164.33	Circular Channel (pipe), J-K
					Diam= 54.0" Area= 15.9 sf Perim= 14.1' r= 1.13'
					n= 0.011 Concrete pipe, straight & clean
33.3	5,552	Total			

Subcatchment 5S: PROPOSED TO BASIN 1

Printed 7/18/2020 Page 9

Summary for Subcatchment 6S: PROPOSED TO BASIN 2


Runoff 49.60 cfs @ 12.12 hrs, Volume= 3.733 af, Depth= 1.62"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Aı	rea (sf)	CN [Description		
*	1	22,667	30 \	Noods, Go	od, HSG A	(ONSITE)
*		43,308	70 \	Noods, Go	od, HSG C	(ONSITE)
*		3,323			od, HSG D	
*		75,069	61 >	>75% Gras	s cover, Go	ood, HSG B (ONSITE A SOIL)
*	1	93,145				ood, HSG D (ONSITE C SOIL)
*		12,756				(ONSITE A)
*		39,104			ing & roofs	(ONSITE C)
*		42,617		CAP		
*	5	47,893		ra zonino		
*		9,866		RA ZONING		
*		81,020		RA ZONING		
<u>*</u>		37,070		RA ZONING		
		07,838		Neighted A		
		55,978		Pervious Ar		
		51,860		mpervious	Area	
	_		01	N/ 1 ''		
	Tc	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	OL 45L AB
	7.4	100	0.0400	0.22		Sheet Flow, A-B
	2.4	F00	0.0400	2.22		Grass: Short n= 0.150 P2= 3.20"
	3.1	598	0.0400	3.22		Shallow Concentrated Flow, B-C
	2.6	697	0.0400	4.43	12.72	Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D
	2.0	097	0.0400	4.43	12.72	Bot.W=4.00' D=0.50' Z= 3.5 '/' Top.W=7.50'
						n= 0.035 Earth, dense weeds
	1.1	161	0.0100	2.45	11.05	
		101	0.0100	2.40	11.00	Bot.W=8.00' D=0.50' Z= 2.0 '/' Top.W=10.00'
						n= 0.035 Earth, dense weeds
	2.1	545	0.0300	4.25	19.13	Trap/Vee/Rect Channel Flow, E-F
						Bot.W=8.00' D=0.50' Z= 2.0 '/' Top.W=10.00'
						n= 0.035 Earth, dense weeds
	0.1	74	0.0700	23.95	117.56	Circular Channel (pipe), F-G
						Diam= 30.0" Area= 4.9 sf Perim= 7.9' r= 0.63' n= 0.012
	0.9	305	0.0500	5.57	30.64	Trap/Vee/Rect Channel Flow, G-H
						Bot.W=10.00' D=0.50' Z= 2.0 '/' Top.W=12.00'
						n= 0.035 Earth, dense weeds
	0.1	163	0.0900	37.15	466.84	Circular Channel (pipe), H-I
						Diam= 48.0" Area= 12.6 sf Perim= 12.6' r= 1.00' n= 0.012
	17.4	2,643	Total			

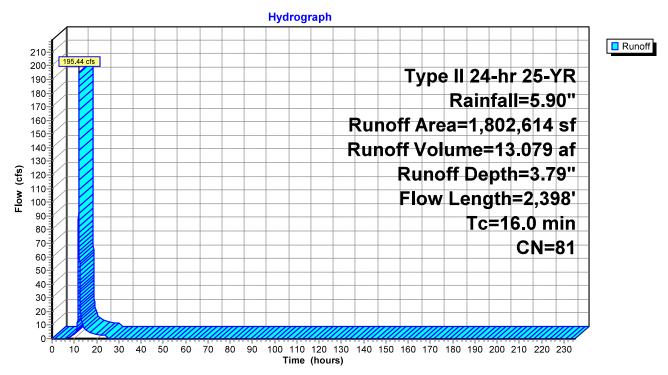
Page 10

Subcatchment 6S: PROPOSED TO BASIN 2

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 11

Summary for Subcatchment 7S: PROPOSED TO BASIN 3


Runoff = 195.44 cfs @ 12.08 hrs, Volume= 13.079 af, Depth= 3.79"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Α	rea (sf)	CN [Description			
*		68,751	61 >	>75% Gras	s cover. Go	ood, HSG B (ONSITE A)	
*		52,304			The state of the s	ood, HSG D (ONSITE C)	
		29,508				ood, HSG D	
*		9,226			•	(ONSITE A)	
*	1	10,479	,				
*		19,790				(ONSITE D)	
*		12,556		CAP			
1,802,614 81 Weighted Average							
	1,663,119 Pervious Area						
		39,495		mpervious			
		,					
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	1.1	33	0.5000		, ,	Sheet Flow, A-B	
			0.0000	0		Grass: Short n= 0.150 P2= 3.20"	
	14.9	2,274	0.0100	2.54	19.03	Trap/Vee/Rect Channel Flow, B-C	
		_,	0.0100	2.0 .	10.00	Bot.W=14.00' D=0.50' Z= 2.0 '/' Top.W=16.00'	
						n= 0.035 Earth, dense weeds	
	0.0	91	0.0600	35.20	691.11	Circular Channel (pipe), C-D	
	0.0	01	0.0000	00.20	001.11	Diam= 60.0" Area= 19.6 sf Perim= 15.7' r= 1.25' n= 0.012	
_	16.0	2 200	Total			Diam	
	16.0	2,398	Total				

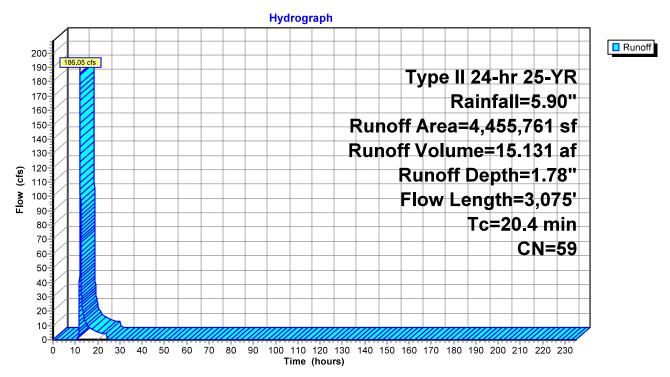
Page 12

Subcatchment 7S: PROPOSED TO BASIN 3

Printed 7/18/2020

Page 13

Summary for Subcatchment 8S: PROPOSED TO BASIN 4


Runoff = 186.05 cfs @ 12.15 hrs, Volume= 15.131 af, Depth= 1.78"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

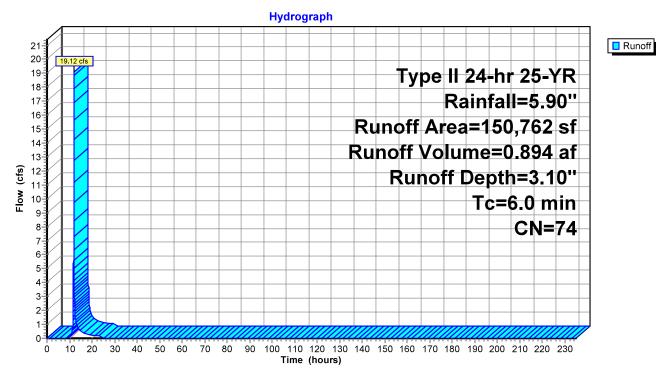
 * 395,927 30 Woods, Good, HSG A (ONSITE) * 5,767 55 Woods, Good, HSG B (ONSITE) * 404,259 70 Woods, Good, HSG C (ONSITE) * 35,334 61 >75% Grass cover, Good, HSG B (ONSITE A) * 18,850 74 >75% Grass cover, Good, HSG C (ONSITE B) * 198,718 80 >75% Grass cover, Good, HSG D (ONSITE C) 50,619 80 >75% Grass cover, Good, HSG D * 7,436 98 Paved parking & roofs (ONSITE A) * 16,314 98 Paved parking & roofs (ONSITE B) * 18,955 98 Paved parking & roofs (ONSITE C) * 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS * 281,741 64 RA ZONING R SOILS 	_	Aı	rea (sf)	CN I	Description					
 * 404,259 70 Woods, Good, HSG C (ONSITE) * 35,334 61 >75% Grass cover, Good, HSG B (ONSITE A) * 18,850 74 >75% Grass cover, Good, HSG C (ONSITE B) * 198,718 80 >75% Grass cover, Good, HSG D (ONSITE C) * 50,619 80 >75% Grass cover, Good, HSG D * 7,436 98 Paved parking & roofs (ONSITE A) * 16,314 98 Paved parking & roofs (ONSITE B) * 18,955 98 Paved parking & roofs (ONSITE C) * 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS 	*	3	95,927	30 '	Woods, Go	od, HSG A	(ONSITE)			
 * 35,334 61 >75% Grass cover, Good, HSG B (ONSITE A) * 18,850 74 >75% Grass cover, Good, HSG C (ONSITE B) * 198,718 80 >75% Grass cover, Good, HSG D (ONSITE C) * 50,619 80 >75% Grass cover, Good, HSG D * 7,436 98 Paved parking & roofs (ONSITE A) * 16,314 98 Paved parking & roofs (ONSITE B) * 18,955 98 Paved parking & roofs (ONSITE C) * 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS 	*		5,767	55	Woods, Go	od, HSG B	(ONSITE)			
 * 18,850 74 >75% Grass cover, Good, HSG C (ONSITE B) * 198,718 80 >75% Grass cover, Good, HSG D (ONSITE C) 50,619 80 >75% Grass cover, Good, HSG D * 7,436 98 Paved parking & roofs (ONSITE A) * 16,314 98 Paved parking & roofs (ONSITE B) * 18,955 98 Paved parking & roofs (ONSITE C) * 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS 	*	4	04,259	70 '	Woods, Go	od, HSG C	(ONSITE)			
 * 198,718 80 >75% Grass cover, Good, HSG D (ONSITE C) 50,619 80 >75% Grass cover, Good, HSG D * 7,436 98 Paved parking & roofs (ONSITE A) * 16,314 98 Paved parking & roofs (ONSITE B) * 18,955 98 Paved parking & roofs (ONSITE C) * 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS 	*		35,334							
50,619 80 >75% Grass cover, Good, HSG D * 7,436 98 Paved parking & roofs (ONSITE A) * 16,314 98 Paved parking & roofs (ONSITE B) * 18,955 98 Paved parking & roofs (ONSITE C) * 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS	*		18,850	74	>75% Gras	s cover, Go	ood, HSG C (ONSITE B)			
 7,436 98 Paved parking & roofs (ONSITE A) 16,314 98 Paved parking & roofs (ONSITE B) 18,955 98 Paved parking & roofs (ONSITE C) 6,703 98 Paved parking & roofs (ONSITE D) 1,043,104 42 RA ZONING A SOILS 	*	1	98,718	80						
 * 16,314 98 Paved parking & roofs (ONSITE B) * 18,955 98 Paved parking & roofs (ONSITE C) * 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS 										
 * 18,955 98 Paved parking & roofs (ONSITE C) * 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS 										
* 6,703 98 Paved parking & roofs (ONSITE D) * 1,043,104 42 RA ZONING A SOILS										
* 1,043,104 42 RA ZONING A SOILS										
							(ONSITE D)			
* 281.741 64 DA ZONING RISOLI S										
, , , , , , , , , , , , , , , , , , ,			81,741							
* 75,531 76 RA ZONING C SOILS										
* 692,547 50 R-2 ZONING A SOILS										
* 599,476 70 R-2 ZONING B SOILS										
* 322,638 80 R-2 ZONING C SOILS	*									
<u>* 281,842 85 R-2 ZONING D SOILS</u>										
4,455,761 59 Weighted Average										
4,406,353 Pervious Area			•							
49,408 Impervious Area			49,408		mpervious	Area				
Tc Length Slope Velocity Capacity Description		Tc	l enath	Slope	Velocity	Capacity	Description			
(min) (feet) (ft/ft) (ft/sec) (cfs)										
6.8 100 0.0500 0.25 Sheet Flow, A-B						()	Sheet Flow A-B			
Grass: Short n= 0.150 P2= 3.20"		0.0	100	0.0000	0.20					
0.5 141 0.1000 5.09 Shallow Concentrated Flow, B-C		0.5	141	0.1000	5.09					
Unpaved Kv= 16.1 fps					0.00					
0.5 190 0.0700 6.14 23.43 Trap/Vee/Rect Channel Flow, C-D		0.5	190	0.0700	6.14	23.43				
Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25'										
n= 0.035 Earth, dense weeds										
2.8 653 0.0600 3.94 Shallow Concentrated Flow, D-E		2.8	653	0.0600	3.94					
Unpaved Kv= 16.1 fps										
0.9 274 0.0500 5.01 15.67 Trap/Vee/Rect Channel Flow, E-F		0.9	274	0.0500	5.01	15.67				
Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00'										
n= 0.035 Earth, dense weeds										
8.8 1,671 0.0200 3.17 9.91 Trap/Vee/Rect Channel Flow, F-G		8.8	1,671	0.0200	3.17	9.91				
Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00'			•							
n= 0.035 Earth, dense weeds										
0.1 46 0.1800 9.91 27.26 Trap/Vee/Rect Channel Flow, G-H		0.1	46	0.1800	9.91	27.26				
Bot.W=4.50' D=0.50' Z= 2.0 '/' Top.W=6.50'										
n= 0.035 Earth, dense weeds							•			
20.4 3,075 Total		20.4	3,075	Total						

Page 14

Subcatchment 8S: PROPOSED TO BASIN 4

Printed 7/18/2020 Page 15

Summary for Subcatchment 15S: PROPOSED TO WQv FACILITY


19.12 cfs @ 11.97 hrs, Volume= Runoff 0.894 af, Depth= 3.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Α	rea (sf)	CN	Description					
		9,235	55	Woods, Go	od, HSG B				
		6,229	70	Woods, Go	od, HSG C				
*		20,647	74	>75% Grass cover, Good, HSG C (ONSITE B)					
*		16,945	80	80 >75% Grass cover, Good, HSG D (ONSITE C)					
*		8,756	98						
*		4,487	98	. ,					
*		65,732	70	R-2 ZONIN	G B SOILS				
*		18,731	80	R-2 ZONIN	G C SOILS				
	1	50,762	74	Weighted A	verage				
	1	37,519		Pervious Ar	ea				
		13,243		Impervious	Area				
	To	Longth	Slor	a Volocity	Canacity	Description			
	Tc	Length	Slop	•	Capacity	Description			
_	(min)	(feet)	(ft/	ft) (ft/sec)	(cfs)				
	6.0					Direct Entry, ASSUMED Tc			

Direct Entry, ASSUMED Tc

Subcatchment 15S: PROPOSED TO WQv FACILITY

Printed 7/18/2020 Page 16


Summary for Subcatchment 19S: DRAINAGE AREA TO CULVERT 3

Runoff = 3.07 cfs @ 11.97 hrs, Volume= 0.144 af, Depth= 3.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

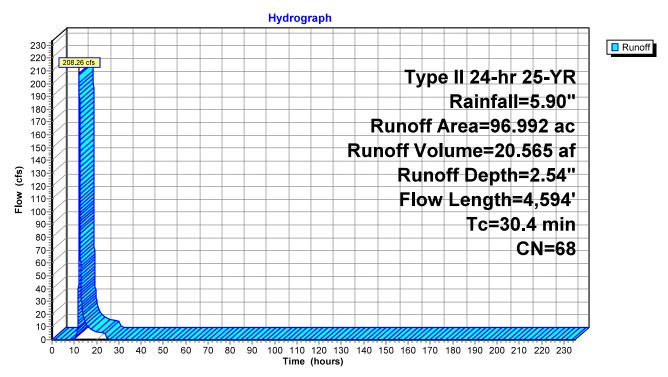
	Area (ac	c) C1	N Des	cription					
*	0.15	0 7	4 >75°	75% Grass cover, Good, HSG C (DISTURBED B)					
*	0.01	3 8) >75°	>75% Grass cover, Good, HSG D (DISTURBED C)					
*	0.00	8 9	B Pave	Paved parking & roofs B SOILS					
*	0.04	2 9	B Pave	aved parking & roofs C SOILS					
*	0.34	3 7	R-2	ZONING E	SOILS				
	0.55	6 7	4 Wei	ghted Aver	age				
	0.50	0.506 Pervious Area							
	0.05	0	Impe	ervious Are	ea				
		ength	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	6.0					Direct Entry, ASSUMED Tc			

Subcatchment 19S: DRAINAGE AREA TO CULVERT 3

Printed 7/18/2020

<u>Page 17</u>

Summary for Subcatchment 20S: DRAINAGE AREA TO CULVERT 4


Runoff = 208.26 cfs @ 12.26 hrs, Volume= 20.565 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

_	Area	(ac) C	N Desc	cription						
*	0.	193	31 >759	% Grass c	over, Good	, HSG B (DISTURBED A)				
*	0.	776	74 >759	% Grass c	over, Good	, HSG C (DISTURBED B)				
*	0.	003	30 >759	>75% Grass cover, Good, HSG D (DISTURBED C)						
	0.228 80 >75% Grass cover, Good, HSG D									
*	0.	050	98 Pave	·						
*	0.	073	98 Pave	Paved parking & roofs B SOILS						
*	0.	800	98 Pave	ed parking	& roofs C	SOILS				
*	0.	028	98 Pave	ed parking	& roofs D	SOILS				
*	33.	640	50 R-2	ZONING A	SOILS					
*	27.	405	70 R-2	ZONING E	SOILS					
*	19.	119	30 R-2	ZONING (SOILS					
*	15.	469	35 R-2	<u>ZONING E</u>	SOILS					
	96.	992	38 Weig	ghted Avei	rage					
	96.	833	Perv	ious Area						
	0.	159	Impe	ervious Are	ea					
	Тс	Length	Slope	Velocity	Capacity	Description				
	Tc (min)	Length (feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	Description				
_				•		Sheet Flow, A-B				
_	(min) 6.8	(feet) 100	(ft/ft) 0.0500	(ft/sec) 0.25		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20"				
	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C				
_	(min) 6.8 4.8	(feet) 100 468	(ft/ft) 0.0500 0.0100	(ft/sec) 0.25 1.61		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps				
_	(min) 6.8	(feet) 100	(ft/ft) 0.0500	(ft/sec) 0.25		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D				
	(min) 6.8 4.8 0.2	(feet) 100 468 83	(ft/ft) 0.0500 0.0100 0.1500	(ft/sec) 0.25 1.61 6.24	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps				
	(min) 6.8 4.8	(feet) 100 468	(ft/ft) 0.0500 0.0100 0.1500	(ft/sec) 0.25 1.61		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E				
	(min) 6.8 4.8 0.2	(feet) 100 468 83	(ft/ft) 0.0500 0.0100 0.1500	(ft/sec) 0.25 1.61 6.24	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00'				
	(min) 6.8 4.8 0.2 14.7	(feet) 100 468 83 3,415	(ft/ft) 0.0500 0.0100 0.1500 0.0300	(ft/sec) 0.25 1.61 6.24 3.88	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00' n= 0.035 Earth, dense weeds				
	(min) 6.8 4.8 0.2	(feet) 100 468 83	(ft/ft) 0.0500 0.0100 0.1500	(ft/sec) 0.25 1.61 6.24	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, E-F				
	(min) 6.8 4.8 0.2 14.7	(feet) 100 468 83 3,415	(ft/ft) 0.0500 0.0100 0.1500 0.0300	(ft/sec) 0.25 1.61 6.24 3.88	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, E-F Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00'				
_	(min) 6.8 4.8 0.2 14.7	(feet) 100 468 83 3,415	(ft/ft) 0.0500 0.0100 0.1500 0.0300	(ft/sec) 0.25 1.61 6.24 3.88	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, E-F				

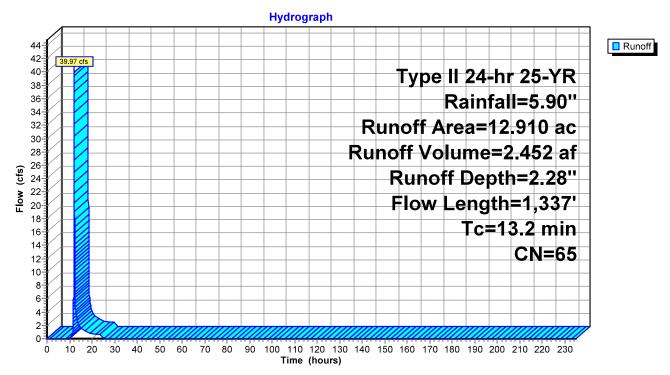
Page 18

Subcatchment 20S: DRAINAGE AREA TO CULVERT 4

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

<u>Page 19</u>

Summary for Subcatchment 21S: DRAINAGE AREA TO CULVERT 5


Runoff 39.97 cfs @ 12.06 hrs, Volume= 2.452 af, Depth= 2.28"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Area	(ac)	CN De	scription		
*	0.	467	61 >75	% Grass c	over, Good	, HSG B (DISTURBED A)
*	0.	546				, HSG C (DISTURBED B)
	0.	197		ed parking		
	0.	052		∕ed parking		
*	3.	819		ZÖNING		
*	6.	875	70 R-2	ZONING E	SOILS	
*	0.	954	80 R-2	ZONING (SOILS	
	12.	910	65 We	ighted Ave	rage	
	12.	661		vious Area		
	0.	249	Imp	ervious Are	ea	
			·			
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.4	100	0.0400	0.22		Sheet Flow, A-B
						Grass: Short n= 0.150 P2= 3.20"
	3.1	428	0.0200	2.28		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	0.0	10	0.6000	12.47		Shallow Concentrated Flow, D-E
						Unpaved Kv= 16.1 fps
	2.7	799	0.0200	4.96	13.30	Trap/Vee/Rect Channel Flow, E-F
						Bot.W=10.00' D=0.25' Z= 1.7 & 4.0 '/' Top.W=11.43'
						n= 0.016 Asphalt, rough
	13.2	1,337	′ Total			

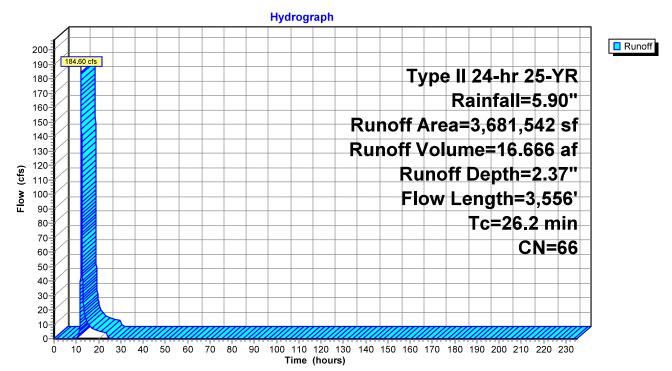
Page 20

Subcatchment 21S: DRAINAGE AREA TO CULVERT 5

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 21

Summary for Subcatchment 22S: DRAINAGE AREA TO CULVERT 6


Runoff = 184.60 cfs @ 12.20 hrs, Volume= 16.666 af, Depth= 2.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

_	Α	rea (sf)	CN D	escription		
*		9,867	80 >	75% Gras	s cover, Go	ood, HSG D (DISTURBED C)
		3,623	98 P	aved park	ing & roofs	
*	1,3	29,281			G A SOILS	
*	,	59,738			G B SOILS	
*	1,2	79,033	80 R	-2 ZONIN	<u>G C SOILS</u>	
		81,542	66 V	Veighted A	verage	
	3,6	77,919		ervious Ar		
		3,623	Ir	npervious	Area	
	т.	Longth	Clana	Valacity	Consoitu	Description
	Tc (min)	Length	Slope (ft/ft)		Capacity (cfs)	Description
_	(min)	(feet)		(ft/sec)	(CIS)	Chast Flow A.D.
	6.8	100	0.0500	0.25		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20"
	2.6	700	0.0800	4.55		Shallow Concentrated Flow, B-C
	2.0	700	0.0000	4.55		Unpaved Kv= 16.1 fps
	3.8	728	0.0400	3.22		Shallow Concentrated Flow, C-D
	0.0	720	0.0-00	0.22		Unpaved Kv= 16.1 fps
	5.9	574	0.0100	1.61		Shallow Concentrated Flow, D-E
						Unpaved Kv= 16.1 fps
	0.1	53	0.2600	8.21		Shallow Concentrated Flow, E-F
						Unpaved Kv= 16.1 fps
	3.9	850	0.0300	3.60	19.81	Trap/Vee/Rect Channel Flow, F-G
						Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'
						n= 0.035 Earth, dense weeds
	3.1	551	0.0200	2.94	16.17	Trap/Vee/Rect Channel Flow, G-H
						Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'
_						n= 0.035 Earth, dense weeds
	26.2	3,556	Total			

Page 22

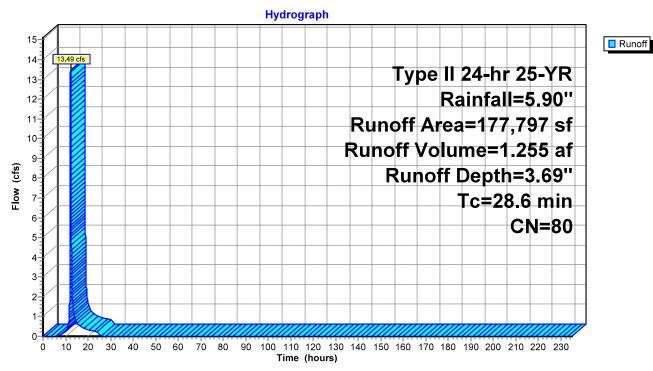
Subcatchment 22S: DRAINAGE AREA TO CULVERT 6

Printed 7/18/2020

Page 23

Summary for Subcatchment 51S: ONSITE ACCESS ROAD (UNMANAGED)

Runoff = 13.49 cfs @ 12.23 hrs, Volume= 1.255 af, Depth= 3.69"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

_	Area (sf)	CN	Description				
*	40,015	61	>75% Grass cover, Good, HSG B (ONSITE A)				
*	9,812	74	>75% Grass cover, Good, HSG C (ONSITE B)				
*	68,391	80	>75% Grass cover, Good, HSG D (ONSITE C)				
	16,061	80	>75% Grass cover, Good, HSG D				
*	12,080	98	Paved parking & roofs (ONSITE A)				
*	3,237	98	Paved parking & roofs (ONSITE B)				
*	24,939	98	Paved parking & roofs (ONSITE C)				
*	3,262	98	Paved parking & roofs (ONSITE D)				
	177,797	80	Weighted Average				
	134,279		Pervious Area				
	43,518		Impervious Area				
	Tc Length	Slo	pe Velocity Capacity Description				
_	(min) (feet)	(ft/	ft) (ft/sec) (cfs)				

28.6

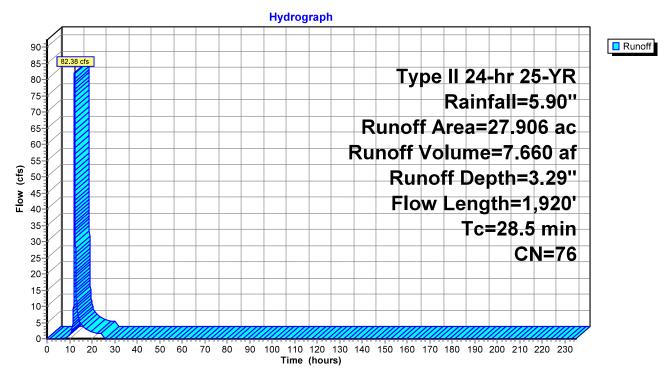
Direct Entry, SEE Tc CALC FOR AREA TO CULVERT 6

Subcatchment 51S: ONSITE ACCESS ROAD (UNMANAGED)

Printed 7/18/2020

Page 24

Summary for Subcatchment 52S: DRAINAGE AREA TO CULVERT 7


Runoff = 82.38 cfs @ 12.22 hrs, Volume= 7.660 af, Depth= 3.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

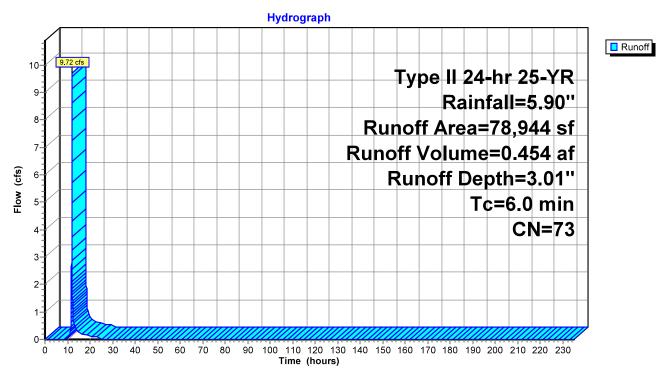
	Area	(ac) C	N Desc	cription		
*	1.	525 8	30 >75%	% Grass co	over, Good	, HSG D (DISTURBED C)
*	0.	201 8	30 >75%	% Grass c	over, Good	, HSG D (DISTURBED D)
*	0.	303 9	8 Pave	ed parking	& roofs C	SOILS
*	0.	052	8 Pave	ed parking	& roofs D	SOILS
*	3.	110 5	60 R-2	ZONING A	SOILS	
*	4.	062 7	'0 R-2	ZONING E	3 SOILS	
*	13.	425 8	30 R-2	ZONING C	SOILS	
*	5.	228 8	85 R-2	ZONING E	SOILS	
	27.	906 7	'6 Weig	ghted Aver	age	
	27.	551	Perv	ious Area	-	
	0.	355	Impe	ervious Are	ea	
	Тс	Length	Slope	Velocity	Capacity	Description
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_		_	•	•		Description Sheet Flow, A-B
	(min) 14.9	(feet) 100	(ft/ft) 0.0500	(ft/sec) 0.11		<u>'</u>
	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow, B-C
_	(min) 14.9 0.6	(feet) 100 145	(ft/ft) 0.0500 0.0700	(ft/sec) 0.11 4.26		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
_	(min) 14.9	(feet) 100	(ft/ft) 0.0500	(ft/sec) 0.11		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D
_	(min) 14.9 0.6 5.9	(feet) 100 145 986	(ft/ft) 0.0500 0.0700 0.0300	(ft/sec) 0.11 4.26 2.79		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps
_	(min) 14.9 0.6	(feet) 100 145	(ft/ft) 0.0500 0.0700	(ft/sec) 0.11 4.26		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E
_	(min) 14.9 0.6 5.9	(feet) 100 145 986	(ft/ft) 0.0500 0.0700 0.0300	(ft/sec) 0.11 4.26 2.79		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps

Page 25

Subcatchment 52S: DRAINAGE AREA TO CULVERT 7

Printed 7/18/2020

Page 26


Summary for Subcatchment 55S: UNMANAGED P 2

Runoff = 9.72 cfs @ 11.97 hrs, Volume= 0.454 af, Depth= 3.01"

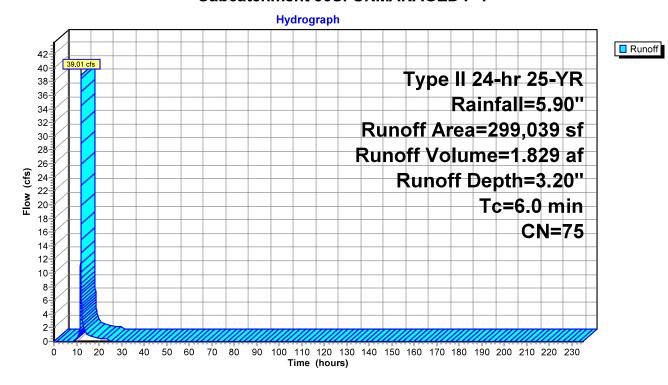
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Area (s	f) CN	Description				
	7,35	4 70	Woods, Go	od, HSG C			
	7,23	6 77	Woods, Go	od, HSG D			
*	24,83	8 61	>75% Gras	s cover, Go	ood, HSG B (ONSITE A)		
*	25,22	4 80	>75% Gras	>75% Grass cover, Good, HSG D (ONSITE C)			
	14,29	2 80	>75% Gras	>75% Grass cover, Good, HSG D			
	78,94	4 73	Weighted A	verage			
	78,94	4	Pervious A	rea			
	Tc Leng	•		Capacity	Description		
(n	nin) (fe	et) (ft	/ft) (ft/sec)	(cfs)			
	6.0				Direct Entry, ASSUMED Tc		

Subcatchment 55S: UNMANAGED P 2

Printed 7/18/2020

Page 27


Summary for Subcatchment 56S: UNMANAGED P 1

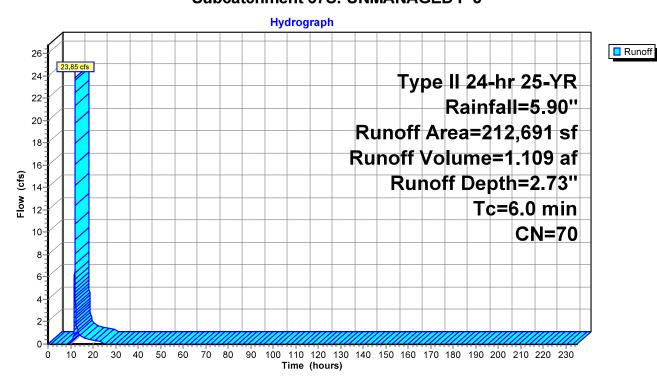
Runoff = 39.01 cfs @ 11.97 hrs, Volume= 1.829 af, Depth= 3.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Aı	rea (sf)	CN	Description				
		4,400	30	Woods, Go	od, HSG A			
		86,031	70	Woods, Go	Noods, Good, HSG C			
	1	84,912	77	Woods, Go	Noods, Good, HSG D			
*		2,047	80	>75% Gras	>75% Grass cover, Good, HSG D (ONSITE C)			
		21,649 80 >75% Grass cover, Good, HSG D				ood, HSG D		
	299,039 75 Weighted Average				verage			
	2	99,039		Pervious Ar	ea			
	Tc	Length	Slop	e Velocity	Capacity	Description		
(I	min)	(feet)	(ft/f1) (ft/sec)	(cfs)			
	6.0					Direct Entry, ASSUMED Tc		

Subcatchment 56S: UNMANAGED P 1

Printed 7/18/2020 Page 28


Summary for Subcatchment 57S: UNMANAGED P 3

Runoff = 23.85 cfs @ 11.98 hrs, Volume= 1.109 af, Depth= 2.73"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

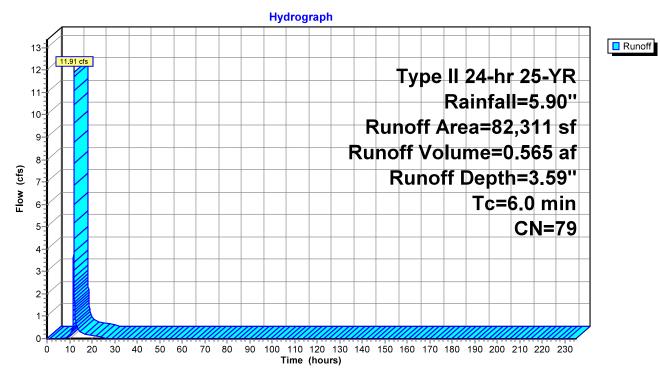
	Area (sf)) CN	Description			
	25,681	30	Woods, Good, HSG A	_		
	11,227	7 70	Woods, Good, HSG C			
	20,676	3 77	Woods, Good, HSG D			
*	37,410	61	>75% Grass cover, Good, HSG B (ONSITE A)			
*	32,984	80	>75% Grass cover, Good, HSG D (ONSITE C)			
	84,713	80	>75% Grass cover, Good, HSG D			
	212,691	70	Weighted Average	_		
	212,691	l	Pervious Area			
	Tc Lengt (min) (fee		• • • •			
,	6.0		Direct Entry, ASSUMED Tc			

Subcatchment 57S: UNMANAGED P 3

Printed 7/18/2020

Page 29

Summary for Subcatchment 58S: UNMANAGED P 4


11.91 cfs @ 11.97 hrs, Volume= Runoff 0.565 af, Depth= 3.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Α	rea (sf)	CN	Description				
*		3,590	61	>75% Gras	s cover, Go	ood, HSG B (ONSITE A)		
*		5,089	74	>75% Gras	s cover, Go	ood, HSG C (ONSITE B)		
*		14,725	80	>75% Gras	>75% Grass cover, Good, HSG D (ONSITE C)			
		58,907	80	>75% Gras	>75% Grass cover, Good, HSG D			
		82,311	79	Weighted A	verage			
		82,311		Pervious Ar	rea			
	Tc (min)	Length (feet)	Slop (ft/ft	•	Capacity (cfs)	Description		
_	6.0		•		,	Direct Entry, ASSUMED Tc		

Direct Entry, ASSUMED Tc

Subcatchment 58S: UNMANAGED P 4

Prepared by {enter your company name here}

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 30

Summary for Pond 9P: BASIN 1

Inflow Area = 154.439 ac, 4.15% Impervious, Inflow Depth = 3.10" for 25-YR event

Inflow 386.46 cfs @ 12.28 hrs, Volume= 39.909 af

Outflow 140.81 cfs @ 12.77 hrs, Volume= 39.794 af, Atten= 64%, Lag= 29.1 min

Primary 140.81 cfs @ 12.77 hrs, Volume= 39.794 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 86.60' @ 12.77 hrs Surf.Area= 143,047 sf Storage= 718,710 cf

Plug-Flow detention time= 588.1 min calculated for 39.794 af (100% of inflow)

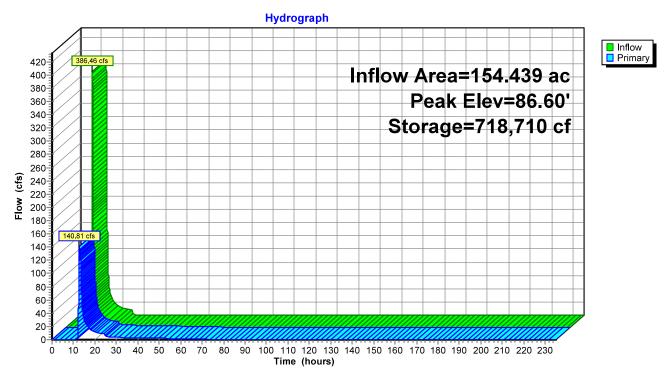
Center-of-Mass det. time= 586.2 min (1,438.0 - 851.7)

Volume	Invert	Avail.Storage	Storage Description
#1	81.00'	1,573,213 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

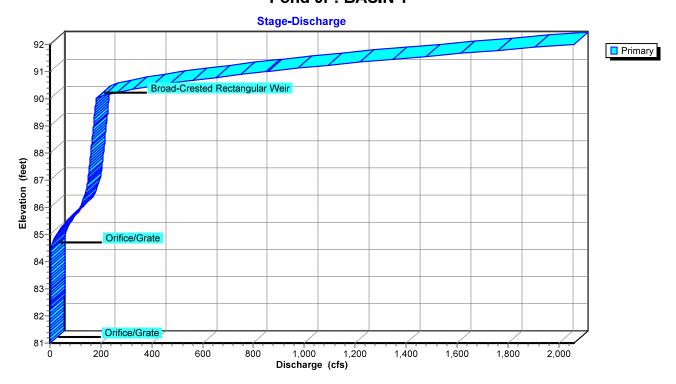
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
81.00	110,353	0	0
82.00	113,238	111,796	111,796
82.50	114,690	56,982	168,778
83.00	128,912	60,901	229,678
87.00	144,633	547,090	776,768
89.00	157,733	302,366	1,079,134
91.00	167,296	325,029	1,404,163
92.00	170,803	169,050	1,573,213

Device	Routing	Invert	Outlet Devices
#1	Primary	79.00'	48.0" x 70.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	·		Outlet Invert= 78.66' S= 0.0049 '/' Cc= 0.900 n= 0.012
#2	Device 1	81.00'	9.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	84.50'	3.00' x 6.50' Horiz. Orifice/Grate Limited to weir flow C= 0.600
#4	Primary	90.00'	250.0' long x 20.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=140.80 cfs @ 12.77 hrs HW=86.60' TW=0.00' (Dynamic Tailwater)


-1=Culvert (Passes 140.80 cfs of 143.14 cfs potential flow) 2=Orifice/Grate (Orifice Controls 4.86 cfs @ 11.00 fps)

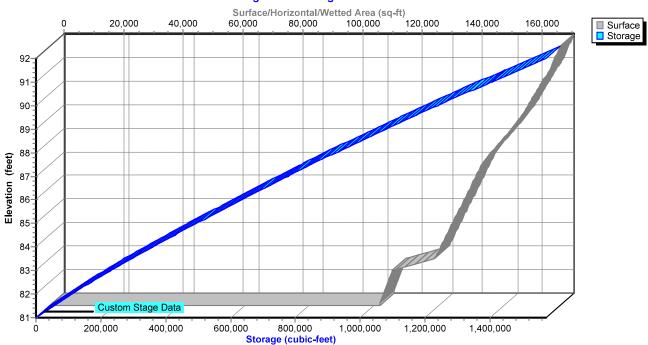
-3=Orifice/Grate (Orifice Controls 135.94 cfs @ 6.97 fps)


-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

<u> Page 31</u>

Pond 9P: BASIN 1

Pond 9P: BASIN 1



Dono 20

Page 32

Pond 9P: BASIN 1

Stage-Area-Storage

Stage-Discharge for Pond 9P: BASIN 1

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
81.00	0.00	84.12	3.52	87.24	151.15	90.36	330.70
81.06	0.00	84.18	3.52 3.56	87.24 87.30	151.15	90.42	369.44
81.12	0.01	84.24	3.60	87.36	151.67	90.48	410.77
81.18	0.03	84.30	3.64	87.42	153.31	90.54	454.74
81.24	0.12	84.36	3.68	87.48	154.03	90.60	501.19
81.30	0.31	84.42	3.71	87.54	154.74	90.66	547.57
81.36	0.43	84.48	3.75	87.60	155.44	90.72	595.53
81.42	0.56	84.54	4.28	87.66	156.15	90.78	644.92
81.48	0.70	84.60	5.78	87.72	156.85	90.84	697.53
81.54	0.85	84.66	7.83	87.78	157.55	90.90	752.83
81.60	1.00	84.72	10.30	87.84	158.25	90.96	809.87
81.66	1.14	84.78	13.13	87.90	158.94	91.02	869.11
81.72	1.26	84.84	16.28	87.96	159.63	91.08	931.18
81.78	1.35	84.90	19.71	88.02	160.31	91.14	995.10
81.84	1.45	84.96	23.41	88.08	161.00	91.20	1,060.84
81.90	1.54	85.02	27.36	88.14	161.68	91.26	1,127.28
81.96	1.63	85.08	31.54	88.20	162.36	91.32	1,195.31
82.02	1.71	85.14	35.94	88.26	163.03	91.38	1,264.89
82.08	1.79	85.20	40.55	88.32	163.70	91.44	1,335.12
82.14	1.86	85.26	45.36	88.38	164.37	91.50	1,406.27
82.20	1.93	85.32	50.36	88.44	165.04	91.56	1,478.70
82.26	2.00	85.38	55.55	88.50	165.70	91.62	1,552.90
82.32	2.07	85.44	60.91	88.56	166.37	91.68	1,629.46
82.38	2.13	85.50	66.45	88.62	167.03	91.74	1,707.40
82.44	2.20	85.56	72.16	88.68	167.68	91.80	1,786.68
82.50	2.26	85.62	78.03	88.74	168.34	91.86	1,867.28
82.56	2.32	85.68 85.74	84.05	88.80	168.99	91.92	1,949.18
82.62 82.68	2.37 2.43	85.74 85.80	90.23 96.57	88.86 88.92	169.63 170.28	91.98	2,032.36
82.74	2.43	85.86	103.04	88.98	170.28		
82.80	2.49	85.92	103.04	89.04	170.52		
82.86	2.59	85.98	116.43	89.10	171.37		
82.92	2.64	86.04	121.11	89.16	172.84		
82.98	2.69	86.10	123.39	89.22	173.48		
83.04	2.74	86.16	125.62	89.28	174.11		
83.10	2.79	86.22	127.82	89.34	174.74		
83.16	2.84	86.28	129.98	89.40	175.37		
83.22	2.89	86.34	132.10	89.46	175.99		
83.28	2.94	86.40	134.19	89.52	176.61		
83.34	2.98	86.46	136.25	89.58	177.23		
83.40	3.03	86.52	138.27	89.64	177.85		
83.46	3.07	86.58	140.27	89.70	178.47		
83.52	3.12	86.64	142.23	89.76	179.08		
83.58	3.16	86.70	144.17	89.82	179.70		
83.64	3.20	86.76	145.22	89.88	180.31		
83.70	3.24	86.82	145.97	89.94	180.91		
83.76	3.29	86.88	146.72	90.00	181.52		
83.82	3.33	86.94	147.47	90.06	191.97		
83.88	3.37	87.00 87.06	148.21	90.12	210.58		
83.94 84.00	3.41	87.06 87.12	148.95	90.18 90.24	234.49		
84.00 84.06	3.45 3.49	87.12 87.18	149.69 150.42	90.24	262.82 295.02		
04.00	5.45] 37.10	100.42] 30.30	233.02		
		I		ı		1	

Page 34

Stage-Area-Storage for Pond 9P: BASIN 1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
81.00	110,353	0	88.80	156,423	1,047,718
81.15	110,786	16,585	88.95	157,406	1,071,256
81.30	111,218	33,236	89.10	158,211	1,094,931
81.45	111,651	49,951	89.25	158,928	1,118,717
81.60	112,084	66,731	89.40	159,646	1,142,610
81.75	112,517	83,576	89.55	160,363	1,166,610
81.90	112,950	100,486	89.70	161,080	1,190,719
82.05	113,383	117, 4 61	89.85	161,797	1,214,934
82.20	113,819	134,501	90.00	162,515	1,239,258
82.35	114,254	151,607	90.15	163,232	1,263,689
82.50	114,690	168,778	90.30	163,949	1,288,227
82.65	118,957	186,301	90.45	164,666	1,312,873
82.80	123,223	204,464	90.60	165,383	1,337,627
82.95	127,490	223,268	90.75	166,101	1,362,488
83.10	129,305	242,589	90.90	166,818	1,387,457
83.25	129,895	262,029	91.05	167,471	1,412,532
83.40	130,484	281,557	91.20	167,997	1,437,692
83.55	131,074	301,174	91.35	168,523	1,462,931
83.70	131,663	320,879	91.50	169,050	1,488,249
83.85	132,253	340,673	91.65	169,576	1,513,646
84.00	132,842	360,555	91.80	170,102	1,539,122
84.15	133,432	380,526	91.95	170,628	1,564,677
84.30	134,021	400,585			
84.45	134,611	420,732			
84.60	135,200	440,968			
84.75	135,790	461,292			
84.90	136,379	481,705			
85.05	136,969	502,206			
85.20	137,559	522,796			
85.35	138,148	543,474			
85.50	138,738	564,240			
85.65	139,327	585,095			
85.80	139,917	606,038			
85.95	140,506	627,070			
86.10	141,096	648,190			
86.25	141,685	669,399			
86.40	142,275	690,696			
86.55	142,864	712,081			
86.70	143,454	733,555			
86.85	144,043	755,117			
87.00 87.45	144,633	776,768			
87.15	145,616	798,537			
87.30 87.45	146,598 147,581	820,453 842,516			
87.45 87.60	147,581 148,563	842,516 864,727			
87.75	140,563	887,085			
87.75 87.90	150,528	909,590			
88.05	150,528	932,243			
88.20	151,510	952,243 955,044			
88.35	153,475	977,991			
88.50	154,458	1,001,086			
88.65	155,441	1,024,329			
50.05	100,771	1,027,020			

Prepared by {enter your company name here}

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 35

Summary for Pond 10P: BASIN 2

Inflow Area = 27.728 ac, 4.29% Impervious, Inflow Depth = 1.62" for 25-YR event

Inflow = 49.60 cfs @ 12.12 hrs, Volume= 3.733 af

Outflow = 3.75 cfs @ 13.90 hrs, Volume= 3.729 af, Atten= 92%, Lag= 106.8 min

Primary = 3.75 cfs @ 13.90 hrs, Volume= 3.729 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 77.06' @ 13.90 hrs Surf.Area= 32,285 sf Storage= 79,209 cf

Plug-Flow detention time= 404.9 min calculated for 3.729 af (100% of inflow)

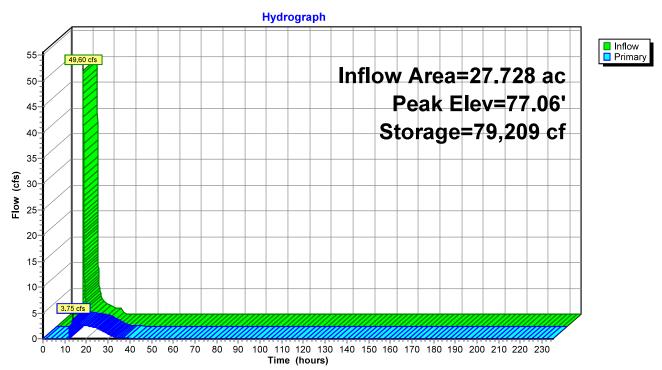
Center-of-Mass det. time= 404.3 min (1,284.0 - 879.7)

Volume	Invert	Avail.Storage	Storage Description
#1	74.00'	183,706 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

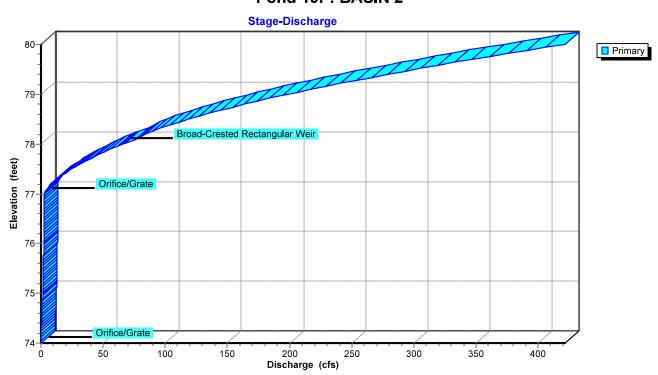
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
74.00	21,185	0	0
75.00	22,367	21,776	21,776
75.50	22,967	11,334	33,110
76.00	29,696	13,166	46,275
78.00	34,569	64,265	110,540
80.00	38,597	73,166	183,706

Device	Routing	Invert	Outlet Devices
#1	Primary	72.00'	36.0" x 51.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	·		Outlet Invert= 71.75' S= 0.0049 '/' Cc= 0.900 n= 0.012
#2	Device 1	74.00'	8.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	77.00'	3.00' x 6.50' Horiz. Orifice/Grate Limited to weir flow C= 0.600
#4	Primary	78.00'	45.0' long x 25.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=3.75 cfs @ 13.90 hrs HW=77.06' TW=0.00' (Dynamic Tailwater)

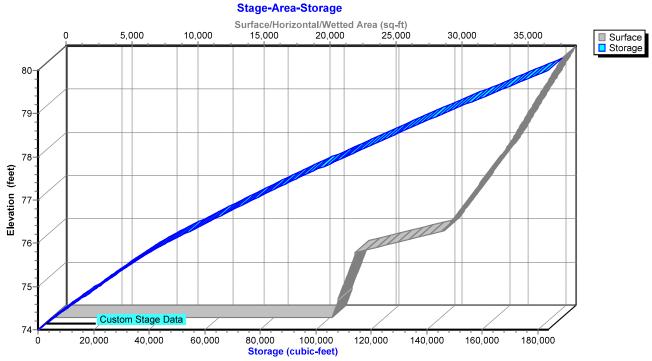

-1=Culvert (Passes 3.75 cfs of 64.02 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 2.78 cfs @ 7.95 fps)


3=Orifice/Grate (Weir Controls 0.98 cfs @ 0.82 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 10P: BASIN 2



Pond 10P: BASIN 2

Page 37

Pond 10P: BASIN 2

Page 38

Stage-Discharge for Pond 10P: BASIN 2

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
74.00	0.00	76.08	2.22	78.16	81.19
74.04	0.01	76.12	2.25	78.20	84.57
74.08	0.02	76.16	2.27	78.24	88.30
74.12	0.05	76.20	2.30	78.28	92.33
74.16	0.09	76.24	2.32	78.32	96.65
74.20	0.13	76.28	2.35	78.36	101.24
74.24	0.19	76.32	2.37	78.40	106.08
74.28	0.25	76.36	2.39	78.44 70.40	111.11
74.32 74.36	0.32 0.39	76.40 76.44	2.42 2.44	78.48 78.52	116.36 121.82
74.30 74.40	0.39	76.44 76.48	2.44	78.56	121.62
74.44	0.55	76.52	2.49	78.60	133.33
74.48	0.63	76.56	2.51	78.64	139.09
74.52	0.72	76.60	2.53	78.68	144.99
74.56	0.80	76.64	2.55	78.72	151.00
74.60	0.87	76.68	2.57	78.76	157.13
74.64	0.94	76.72	2.60	78.80	163.36
74.68	0.99	76.76	2.62	78.84	170.04
74.72	1.05 1.10	76.80	2.64	78.88 78.83	176.87
74.76 74.80	1.10	76.84 76.88	2.66 2.68	78.92 78.96	183.83 190.93
74.84	1.13	76.88 76.92	2.70	78.90 79.00	190.93
74.88	1.24	76.96	2.72	79.04	205.73
74.92	1.29	77.00	2.74	79.08	213.43
74.96	1.33	77.04	3.26	79.12	221.29
75.00	1.37	77.08	4.19	79.16	229.28
75.04	1.41	77.12	5.39	79.20	237.42
75.08	1.45	77.16	6.80	79.24	245.58
75.12 75.16	1.49 1.53	77.20 77.24	8.40 10.17	79.28 79.32	253.87 262.28
75.10 75.20	1.56	77.24 77.28	12.09	79.32 79.36	270.81
75.24	1.60	77.32 77.32	14.15	79.40	279.46
75.28	1.64	77.36	16.34	79.44	288.08
75.32	1.67	77.40	18.66	79.48	296.80
75.36	1.70	77.44	21.10	79.52	305.63
75.40	1.74	77.48	23.64	79.56	314.56
75.44	1.77	77.52	26.30	79.60	323.58
75.48	1.80	77.56	29.06	79.64	332.90
75.52 75.56	1.83 1.86	77.60 77.64	31.91 34.87	79.68 79.72	342.32 351.85
75.60	1.89	77.68	34.67 37.91	79.72 79.76	361.49
75.64	1.92	77.72	41.05	79.80	371.24
75.68	1.95	77.76	44.28	79.84	381.09
75.72	1.98	77.80	47.59	79.88	391.04
75.76	2.01	77.84	50.98	79.92	401.10
75.80	2.04	77.88	54.45	79.96	411.26
75.84	2.06	77.92	58.01	80.00	421.52
75.88 75.92	2.09 2.12	77.96 78.00	61.64 65.35		
75.92 75.96	2.12 2.14	78.04	70.10		
76.00	2.17	78.08	75.57		
76.04	2.20	78.12	78.17		

Page 39

Stage-Area-Storage for Pond 10P: BASIN 2

Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	-
74.00 74.10	21,185 21,303	0 2,124	
74.10	21,421	4,261	
74.30	21,540	6,409	
74.40	21,658	8,569	
74.50	21,776	10,740	
74.60	21,894	12,924	
74.70	22,012	15,119	
74.80 74.90	22,131	17,326	
74.90 75.00	22,249 22,367	19,545 21,776	
75.10	22,487	24,019	
75.20	22,607	26,273	
75.30	22,727	28,540	
75.40	22,847	30,819	
75.50 75.60	22,967 24,313	33,110	
75.70	25,659	35,473 37,972	
75.80	27,004	40,605	
75.90	28,350	43,373	
76.00	29,696	46,275	
76.10	29,940	49,257	
76.20 76.30	30,183 30,427	52,263 55,294	
76.30 76.40	30,427 30,671	58,349	
76.50	30,914	61,428	
76.60	31,158	64,531	
76.70	31,402	67,659	
76.80	31,645	70,812	
76.90 77.00	31,889 32,133	73,988 77,190	
77.10	32,133	80,415	
77.20	32,620	83,665	
77.30	32,863	86,939	
77.40	33,107	90,237	
77.50	33,351	93,560	
77.60 77.70	33,594 33,838	96,908 100,279	
77.70 77.80	34,082	103,675	
77.90	34,325	107,096	
78.00	34,569	110,540	
78.10	34,770	114,007	
78.20	34,972 35,473	117,494	
78.30 78.40	35,173 35,375	121,002 124,529	
78.50	35,576	128,077	
78.60	35,777	131,644	
78.70	35,979	135,232	
78.80	36,180	138,840	
78.90 70.00	36,382 36,583	142,468 146,116	
79.00 79.10	36,583 36,784	146,116 149,785	
13.10	JU, 1 U4	178,703	

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
79.20	36,986	153,473
79.30	37,187	157,182
79.40	37,389	160,911
79.50	37,590	164,660
79.60	37,791	168,429
79.70	37,993	172,218
79.80	38,194	176,027
79.90	38,396	179,857
80.00	38.597	183.706

Prepared by {enter your company name here}

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 40

Summary for Pond 11P: BASIN 3

Inflow Area = 41.382 ac, 7.74% Impervious, Inflow Depth = 3.79" for 25-YR event

Inflow = 195.44 cfs @ 12.08 hrs, Volume= 13.079 af

Outflow = 54.16 cfs @ 12.37 hrs, Volume= 13.036 af, Atten= 72%, Lag= 17.7 min

Primary = 54.16 cfs @ 12.37 hrs, Volume= 13.036 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 77.89' @ 12.37 hrs Surf.Area= 83,655 sf Storage= 277,110 cf

Plug-Flow detention time= 865.5 min calculated for 13.036 af (100% of inflow)

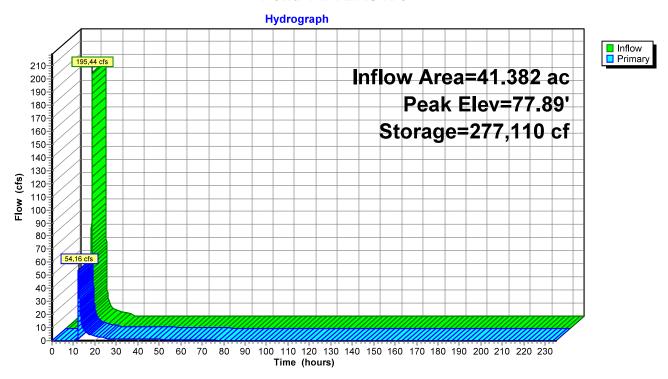
Center-of-Mass det. time= 863.5 min (1,681.9 - 818.4)

Volume	Invert	Avail.Storage	Storage Description
#1	74.00'	461,645 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

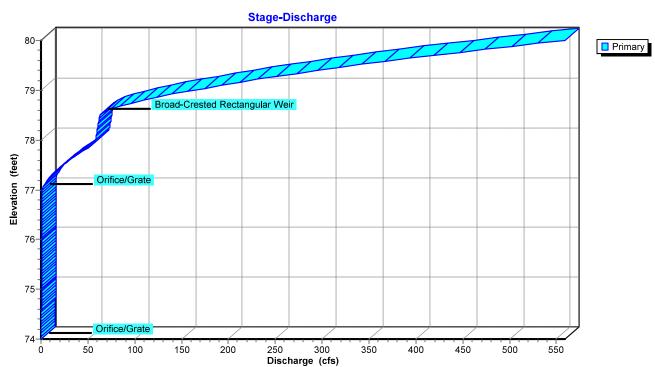
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
74.00	59,381	0	0
75.00	61,618	60,500	60,500
75.50	62,746	31,091	91,591
76.00	75,824	34,643	126,233
78.00	84,101	159,925	286,158
80.00	91,386	175.487	461,645

Device	Routing	Invert	Outlet Devices
#1	Primary	73.10'	36.0" x 220.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	•		Outlet Invert= 72.00' S= 0.0050 '/' Cc= 0.900 n= 0.012
#2	Device 1	74.00'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	77.00'	3.00' x 6.50' Horiz. Orifice/Grate Limited to weir flow C= 0.600
#4	Primary	78.50'	100.0' long x 25.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=54.15 cfs @ 12.37 hrs HW=77.89' TW=0.00' (Dynamic Tailwater)

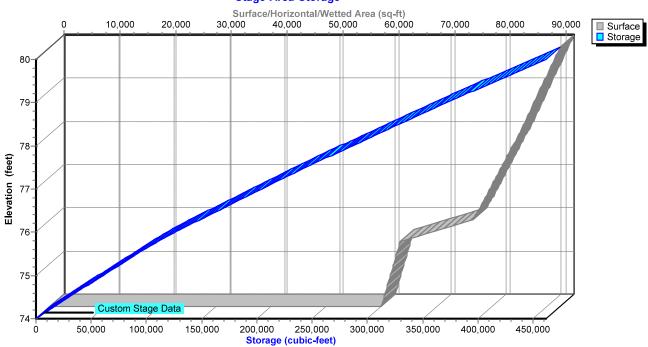

-1=Culvert (Passes 54.15 cfs of 57.03 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 1.80 cfs @ 9.19 fps)


3=Orifice/Grate (Weir Controls 52.35 cfs @ 3.09 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 11P: BASIN 3



Pond 11P: BASIN 3

Pond 11P: BASIN 3

Stage-Area-Storage

Stage-Discharge for Pond 11P: BASIN 3

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
74.00	0.00	76.08	1.28	78.16	59.62
74.04	0.01	76.12	1.29	78.20	59.99
74.08	0.02	76.16	1.31	78.24	60.37
74.12	0.04	76.20	1.32	78.28	60.74
74.16	0.07	76.24	1.33	78.32	61.11
74.20	0.11	76.28	1.35	78.36	61.48
74.24	0.16	76.32	1.36	78.40	61.84
74.28	0.20	76.36	1.37	78.44	62.20
74.32	0.26	76.40 76.44	1.39	78.48	62.56
74.36 74.40	0.31 0.36	76.44 76.48	1.40 1.41	78.52 78.56	63.68 67.22
74.44 74.44	0.30	76.46 76.52	1.42	78.60	72.11
74.48	0.46	76.56	1.44	78.64	78.02
74.52	0.49	76.60	1.45	78.68	84.80
74.56	0.53	76.64	1.46	78.72	92.36
74.60	0.56	76.68	1.47	78.76	100.64
74.64	0.59	76.72	1.49	78.80	109.58
74.68	0.62	76.76	1.50	78.84	119.13
74.72	0.65	76.80	1.51	78.88 78.83	129.26
74.76 74.80	0.68 0.70	76.84 76.88	1.52 1.53	78.92 78.96	139.89 150.98
74.84	0.70	76.88 76.92	1.54	78.90 79.00	162.53
74.88	0.75	76.96	1.56	79.04	174.55
74.92	0.77	77.00	1.57	79.08	187.01
74.96	0.80	77.04	2.08	79.12	199.59
75.00	0.82	77.08	3.00	79.16	212.21
75.04	0.84	77.12	4.18	79.20	225.10
75.08	0.86	77.16	5.59	79.24	238.26
75.12	0.88	77.20	7.18	79.28	251.66
75.16 75.20	0.90 0.92	77.24 77.28	8.94 10.85	79.32 79.36	265.66 280.34
75.24	0.94	77.32	12.90	79.30 79.40	295.33
75.28	0.96	77.36	15.09	79.44	310.63
75.32	0.98	77.40	17.40	79.48	326.23
75.36	1.00	77.44	19.82	79.52	342.33
75.40	1.01	77.48	22.36	79.56	358.97
75.44	1.03	77.52	25.01	79.60	375.93
75.48	1.05	77.56	27.76	79.64	393.21
75.52	1.07	77.60	30.61 33.55	79.68	410.82
75.56 75.60	1.08 1.10	77.64 77.68	36.59	79.72 79.76	428.61 446.56
75.64	1.10	77.72	39.72	79.70 79.80	464.79
75.68	1.13	77.76	42.94	79.84	483.29
75.72	1.15	77.80	46.24	79.88	502.07
75.76	1.16	77.84	49.62	79.92	520.94
75.80	1.18	77.88	53.09	79.96	539.89
75.84	1.19	77.92	56.64	80.00	559.07
75.88	1.21	77.96	57.70		
75.92 75.96	1.22 1.24	78.00 78.04	58.09 58.47		
75.96 76.00	1.24	78.04 78.08	56.47 58.86		
76.04	1.26	78.12	59.24		

Storage

389,702

398,567

407,469 416,407

425,382

434,393

443,441

452,525

461,645

(cubic-feet)

Page 44

Stage-Area-Storage for Pond 11P: BASIN 3

Surface

(sq-ft)

88,472

88,836

89,201

89,565

89,929

90,293

90,657

91,022

91,386

Elevation

(feet)

79.20

79.30

79.40

79.50

79.60

79.70

79.80

79.90

80.00

Elevation (feet)	Surface (sg-ft)	Storage (cubic-feet)
(feet) 74.00 74.10 74.20 74.30 74.40 74.50 74.60 74.70 74.80 75.00 75.10 75.20 75.30 75.40 75.50 75.60 75.70 75.80 75.90 76.00 76.10 76.20 76.30 76.40 76.50 76.60 76.70 76.80 76.70 77.30 77.10 77.20 77.30 77.40 77.50 77.60 77.70 77.80 77.90 78.00 78.10 78.20	(sq-ft) 59,381 59,605 59,828 60,052 60,276 60,500 60,723 60,947 61,171 61,394 61,618 61,844 62,069 62,295 62,520 62,746 65,362 67,977 70,593 73,208 75,824 76,238 76,652 77,066 77,479 77,893 78,307 78,721 79,135 79,549 79,963 80,376 80,790 81,204 81,618 82,032 82,446 82,859 83,273 83,687 84,101 84,465 84,830	(cubic-feet) 0 5,949 11,921 17,915 23,931 29,970 36,031 42,115 48,221 54,349 60,500 66,673 72,868 79,086 85,327 91,591 97,996 104,663 111,591 118,781 126,233 133,836 141,481 149,166 156,894 164,662 172,472 180,324 188,217 196,151 204,126 212,143 220,202 228,301 236,442 244,625 252,849 261,114 269,421 277,769 286,158 294,586 303,051
77.20 77.30 77.40 77.50 77.60 77.70 77.80 77.90 78.00 78.10	80,790 81,204 81,618 82,032 82,446 82,859 83,273 83,687 84,101 84,465	220,202 228,301 236,442 244,625 252,849 261,114 269,421 277,769 286,158 294,586

Limited to weir flow C= 0.600

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 45

Summary for Pond 12P: BASIN 4

Inflow Area = 102.290 ac, 1.11% Impervious, Inflow Depth = 1.78" for 25-YR event

Inflow = 186.05 cfs @ 12.15 hrs, Volume= 15.131 af

Outflow = 95.11 cfs @ 12.37 hrs, Volume= 15.125 af, Atten= 49%, Lag= 13.1 min

Primary = 95.11 cfs @ 12.37 hrs, Volume= 15.125 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 84.49' @ 12.37 hrs Surf.Area= 42,508 sf Storage= 200,499 cf

Plug-Flow detention time= 416.5 min calculated for 15.125 af (100% of inflow)

Center-of-Mass det. time= 416.2 min (1,292.9 - 876.7)

Volume	Inve	ert Avail.Sto	rage Storage D	Description			
#1	78.5	0' 420,8	19 cf Custom S	Stage Data (Pr	ismatic) Listed below (Recalc)		
Elevation	vation Surf.Area		Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
78.5	50	23,525	0	0			
79.5	50	24,819	24,172	24,172			
80.0	00	30,634	13,863	38,035			
82.0	00	35,056	65,690	103,725			
84.0	00	41,314	76,370	180,095			
86.0	00	46,221	87,535	267,630			
88.0	00	50,842	97,063	364,693			
89.0	00	61,410	56,126	420,819			
Device	Routing	Invert	Outlet Devices				
#1	Primary	76.80'	48.0" x 161.0'	long Culvert	RCP, sq.cut end projecting, Ke= 0.500		
	-		Outlet Invert= 7	76.00' S= 0.00	050 '/' Cc= 0.900		
			n= 0.011 Cond	rete pipe, stra	ight & clean		
#2	Device 1	78.50'	' 6.0" Vert. Orifice/Grate C= 0.600				

7.00' x 10.00' Horiz. Orifice/Grate

90.0' long x 25.0' breadth Broad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63

Primary OutFlow Max=95.06 cfs @ 12.37 hrs HW=84.49' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 95.06 cfs of 144.29 cfs potential flow)

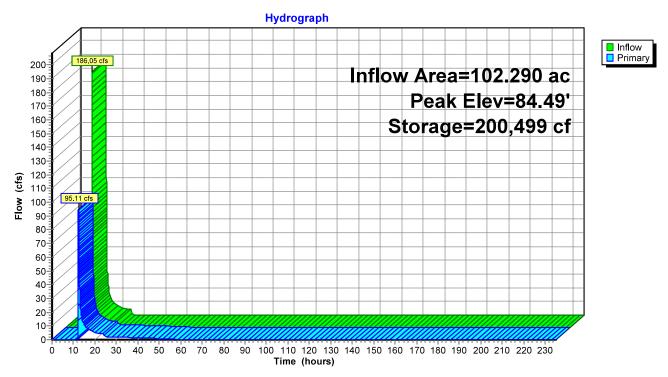
83.60'

88.15'

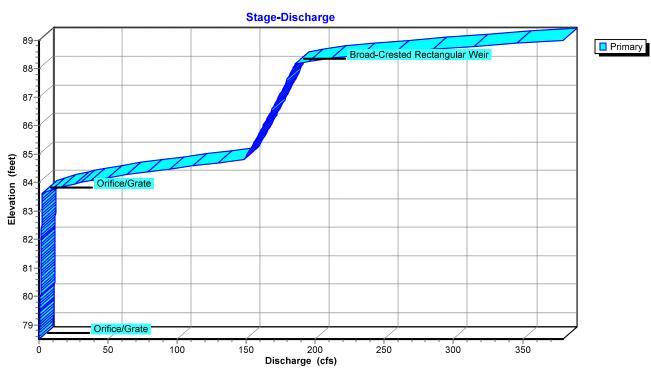
#3

#4

Device 1

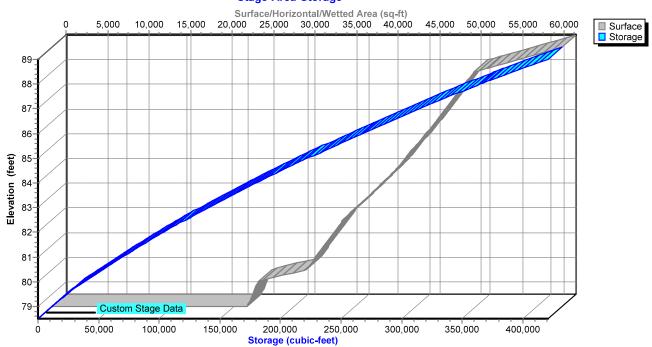

Primary

—2=Orifice/Grate (Orifice Controls 2.26 cfs @ 11.53 fps) **—3=Orifice/Grate** (Weir Controls 92.80 cfs @ 3.08 fps)


-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 46

Pond 12P: BASIN 4


Pond 12P: BASIN 4

Page 47

Pond 12P: BASIN 4

Stage-Area-Storage

Stage-Discharge for Pond 12P: BASIN 4

Floretion	During and	l Flavetice	During and	l ====================================	Duine au	l Flavetice	Duine en c
Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
78.50	0.00	81.62	1.60	84.74	137.64	87.86	182.12
78.56	0.00	81.68	1.62	84.80	148.21	87.92	182.73
78.62	0.04	81.74	1.63	84.86	148.95	87.98	183.33
78.68	0.09	81.80	1.65	84.92	149.69	88.04	183.92
78.74	0.16	81.86	1.67	84.98	150.42	88.10	184.52
78.80	0.23	81.92	1.68	85.04	151.15	88.16	185.36
78.86	0.31	81.98	1.70	85.10	151.87	88.22	190.17
78.92	0.39	82.04	1.71	85.16	152.59	88.28	197.60
78.98	0.46	82.10	1.73	85.22	153.31	88.34	206.86
79.04	0.51	82.16	1.75	85.28	154.03	88.40	217.68
79.10	0.56	82.22	1.76	85.34	154.74	88.46	229.86
79.16	0.61	82.28	1.78	85.40	155.44	88.52	243.27
79.22	0.65	82.34	1.79	85.46	156.15	88.58	257.74
79.28	0.69	82.40	1.81	85.52	156.85	88.64	273.15
79.34	0.73	82.46	1.82	85.58	157.55	88.70	289.50
79.40	0.76	82.52	1.84	85.64	158.25	88.76	306.60
79.46	0.80	82.58	1.85	85.70	158.94	88.82	323.76
79.52	0.83	82.64	1.86	85.76	159.63	88.88	341.48
79.58	0.86	82.70	1.88	85.82	160.31	88.94	359.70
79.64	0.89	82.76	1.89	85.88	161.00	89.00	379.26
79.70 79.76	0.92 0.95	82.82 82.88	1.91 1.92	85.94 86.00	161.68 162.36		
79.76 79.82	0.93	82.94	1.92	86.06	163.03		
79.82 79.88	1.00	83.00	1.94	86.12	163.03		
79.00 79.94	1.03	83.06	1.96	86.18	164.37		
80.00	1.06	83.12	1.98	86.24	165.04		
80.06	1.08	83.18	1.99	86.30	165.70		
80.12	1 11	83.24	2.00	86.36	166.37		
80.18	1.13	83.30	2.02	86.42	167.03		
80.24	1.15	83.36	2.03	86.48	167.68		
80.30	1.18	83.42	2.04	86.54	168.34		
80.36	1.20	83.48	2.06	86.60	168.99		
80.42	1.22	83.54	2.07	86.66	169.63		
80.48	1.24	83.60	2.08	86.72	170.28		
80.54	1.26	83.66	3.73	86.78	170.92		
80.60	1.29	83.72	6.73	86.84	171.57		
80.66	1.31	83.78	10.61	86.90	172.21		
80.72	1.33	83.84	15.21	86.96	172.84		
80.78	1.35	83.90	20.41	87.02	173.48		
80.84	1.37	83.96	26.17	87.08	174.11		
80.90	1.39	84.02	32.43	87.14	174.74		
80.96	1.41	84.08	39.16	87.20	175.37		
81.02	1.42	84.14	46.31 53.88	87.26	175.99		
81.08 81.14	1.44 1.46	84.20 84.26	61.83	87.32	176.61		
81.20	1 48	84.32	70.16	87.38 87.44	177.23 177.85		
81.26	1 50	84.38	78.83	87.50	177.65		
81.32	1.52	84.44	87.85	87.56	179.08		
81.38	1.53	84.50	97.19	87.62	179.70		
81.44	1.55	84.56	106.86	87.68	180.31		
81.50	1.57	84.62	116.82	87.74	180.91		
81.56	1.58	84.68	127.09	87.80	181.52		

Page 49

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 12P: BASIN 4

		J	J		
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
78.50	23,525	0	86.30	46,914	281,601
78.65	23,719	3,543	86.45	47,261	288,664
78.80	23,913	7,116	86.60	47,607	295,779
78.95	24,107	10,717	86.75	47,954	302,946
79.10	24,301	14,348	86.90	48,300	310,165
79.25	24,496	18,008	87.05	48,647	317,436
79.40	24,690	21,697	87.20	48,994	324,759
79.55	25,400	25,427	87.35	49,340	332,134
79.70	27,145	29,368	87.50	49,687	339,561
79.85	28,889	33,571	87.65	50,033	347,040
80.00	30,634	38,035	87.80	50,380	354,571
80.15	30,966	42,655	87.95	50,726	362,154
80.30	31,297	47,325	88.10	51,899	369,830
80.45	31,629	52,044	88.25	53,484	377,734
80.60	31,961	56,814	88.40	55,069	385,875
80.75	32,292	61,633	88.55	56,654	394,255
80.90	32,624	66,501	88.70	58,240	402,872
81.05	32,956	71,420	88.85	59,825	411,727
81.20	33,287	76,388	89.00	61, 4 10	420,819
81.35	33,619	81,406			
81.50 81.65	33,951	86,474			
81.65 81.80	34,282 34,614	91,591 06.759			
81.80 81.95	34,614 34,945	96,758 101,975			
82.10	35,369	107,246			
82.25	35,838	112,587			
82.40	36,308	117,998			
82.55	36,777	123,479			
82.70	37,246	129,031			
82.85	37,716	134,653			
83.00	38,185	140,346			
83.15	38,654	146,109			
83.30	39,124	151,942			
83.45	39,593	157,846			
83.60	40,062	163,820			
83.75	40,532	169,865			
83.90	41,001	175,979			
84.05	41,437	182,164			
84.20	41,805	188,407			
84.35	42,173 42,541	194,705			
84.50 84.65	42,541 42,909	201,059 207,468			
84.80	43,277	213,932			
84.95	43,645	220,451			
85.10	44,013	227,025			
85.25	44,381	233,655			
85.40	44,749	240,339			
85.55	45,117	247,079			
85.70	45,485	253,874			
85.85	45,853	260,725			
86.00	46,221	267,630			
86.15	46,568	274,589			

CT_Prop Basins_07152020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 50

Summary for Pond 16P: WQv FACILITY

Inflow Area = 3.461 ac, 8.78% Impervious, Inflow Depth = 3.10" for 25-YR event

Inflow = 19.12 cfs @ 11.97 hrs, Volume= 0.894 af

Outflow = 15.60 cfs @ 12.02 hrs, Volume= 0.894 af, Atten= 18%, Lag= 2.8 min

Primary = 15.60 cfs @ 12.02 hrs, Volume= 0.894 af

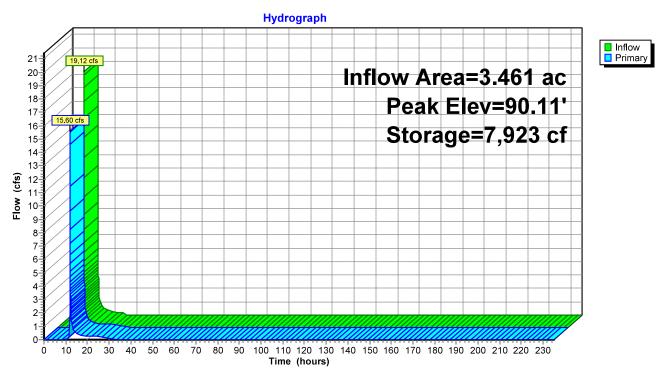
Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 90.11' @ 12.02 hrs Surf.Area= 4,271 sf Storage= 7,923 cf

Plug-Flow detention time= 134.0 min calculated for 0.894 af (100% of inflow)

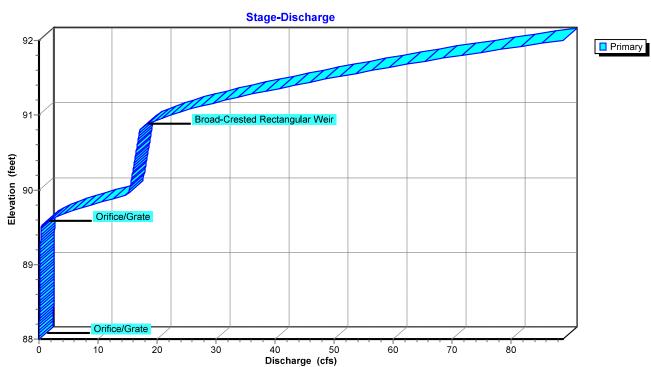
Center-of-Mass det. time= 134.4 min (960.8 - 826.4)

Volume	Inv	ert Avail.Sto	rage Storage	e Description				
#1	88.0	00' 16,9	30 cf Custor	m Stage Data (Prismatic) Listed below (Recalc)				
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
88.0	00	3,242	0	0				
89.5	50	3,958	5,400	5,400				
90.0	00	4,210	2,042	7,442				
92.00		5,278	9,488	16,930				
Device	Routing	Invert	Outlet Devic	ces				
#1	Primary	86.00'	Outlet Invert	0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 t= 82.00' S= 0.0909 '/' Cc= 0.900 oncrete pipe, straight & clean				
#2	Device 1	88.00'		rifice/Grate C= 0.600				
#3	Device 1	89.50'	4.00' x 4.00'	Horiz. Orifice/Grate Limited to weir flow C= 0.600				
#4			Head (feet)	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63				

Primary OutFlow Max=15.60 cfs @ 12.02 hrs HW=90.11' TW=0.00' (Dynamic Tailwater)

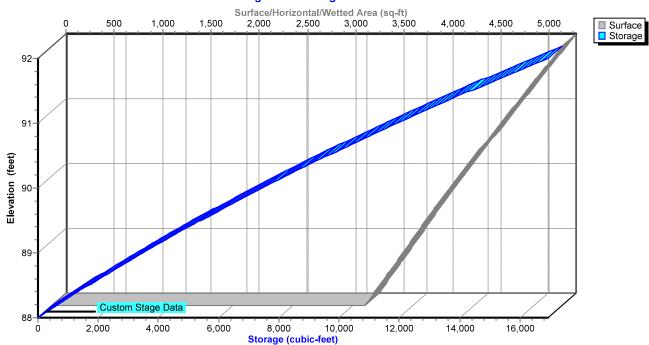

-1=Culvert (Inlet Controls 15.60 cfs @ 8.83 fps)

2=Orifice/Grate (Passes < 0.33 cfs potential flow)


3=Orifice/Grate (Passes < 25.13 cfs potential flow)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 16P: WQv FACILITY



Pond 16P: WQv FACILITY

Pond 16P: WQv FACILITY

Stage-Area-Storage

Stage-Discharge for Pond 16P: WQv FACILITY

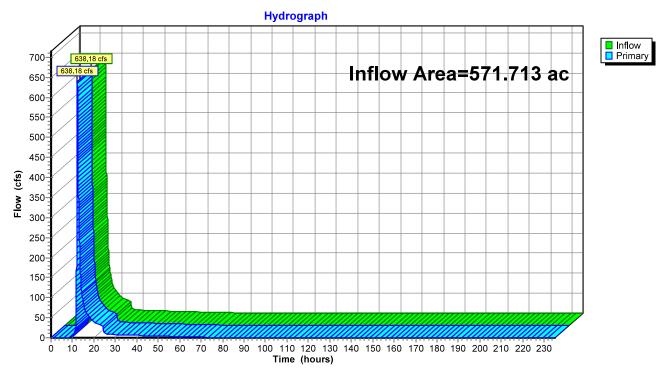
Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
88.00	0.00	89.04	0.23	90.08	15.53	91.12	27.53
88.02	0.00	89.06	0.23	90.10	15.57	91.14	28.51
88.04	0.00	89.08	0.23	90.12	15.62	91.16	29.52
88.06	0.01	89.10	0.23	90.14	15.67	91.18	30.55
88.08	0.01	89.12	0.24	90.16	15.71	91.20	31.61
88.10 88.12	0.02 0.03	89.14 89.16	0.24 0.24	90.18 90.20	15.76 15.80	91.22 91.24	32.69 33.79
88.14	0.03	89.18	0.24	90.20	15.85	91.24	34.92
88.16	0.04	89.20	0.24	90.22	15.03	91.28	36.07
88.18	0.05	89.22	0.25	90.24	15.94	91.30	37.24
88.20	0.06	89.24	0.25	90.28	15.99	91.32	38.44
88.22	0.07	89.26	0.25	90.30	16.03	91.34	39.66
88.24	0.08	89.28	0.25	90.32	16.08	91.36	40.90
88.26	0.09	89.30	0.26	90.34	16.12	91.38	42.16
88.28	0.09	89.32	0.26	90.36	16.17	91.40	43.45
88.30	0.10	89.34	0.26	90.38	16.21	91.42	44.69
88.32	0.10	89.36	0.26	90.40	16.26	91.44	45.95
88.34	0.11	89.38	0.26	90.42	16.30	91.46	47.23
88.36	0.11	89.40	0.27	90.44	16.34	91.48	48.52
88.38	0.12	89.42	0.27	90.46	16.39	91.50	49.82
88.40	0.12	89.44	0.27	90.48	16.43	91.52	51.13
88.42	0.13	89.46	0.27	90.50	16.48	91.54	52.46
88.44	0.13 0.14	89.48 89.50	0.28 0.28	90.52 90.54	16.52	91.56	53.80 55.16
88.46 88.48	0.14	89.52	0.28	90.54	16.56 16.61	91.58 91.60	56.52
88.50	0.14	89.54	0.43	90.58	16.65	91.62	57.97
88.52	0.15	89.56	1.05	90.60	16.70	91.64	59.43
88.54	0.15	89.58	1.47	90.62	16.74	91.66	60.92
88.56	0.16	89.60	1.94	90.64	16.78	91.68	62.41
88.58	0.16	89.62	2.46	90.66	16.82	91.70	63.93
88.60	0.16	89.64	3.03	90.68	16.87	91.72	65.46
88.62	0.17	89.66	3.64	90.70	16.91	91.74	67.00
88.64	0.17	89.68	4.29	90.72	16.95	91.76	68.56
88.66	0.17	89.70	4.98	90.74	17.00	91.78	70.13
88.68	0.18	89.72	5.70	90.76	17.04	91.80	71.72
88.70	0.18	89.74	6.45	90.78	17.08	91.82	73.37
88.72	0.18	89.76	7.24	90.80	17.12	91.84	75.03
88.74 88.76	0.19 0.19	89.78 89.80	8.06 8.90	90.82 90.84	17.32	91.86 91.88	76.70 78.40
88.78	0.19	89.82	9.78	90.86	17.64 18.04	91.90	80.11
88.80	0.19	89.84	10.68	90.88	18.50	91.92	81.84
88.82	0.20	89.86	11.61	90.90	19.03	91.94	83.58
88.84	0.20	89.88	12.57	90.92	19.60	91.96	85.34
88.86	0.20	89.90	13.55	90.94	20.22	91.98	87.11
88.88	0.21	89.92	14.56	90.96	20.89	92.00	88.90
88.90	0.21	89.94	15.20	90.98	21.59		
88.92	0.21	89.96	15.24	91.00	22.34		
88.94	0.21	89.98	15.29	91.02	23.12		
88.96	0.22	90.00	15.34	91.04	23.94		
88.98	0.22	90.02	15.39	91.06	24.79		
89.00	0.22	90.04	15.43	91.08	25.67		
89.02	0.22	90.06	15.48	91.10	26.59		
		I		I			

Stage-Area-Storage for Pond 16P: WQv FACILITY

Florestion	Curfoso	Storogo	l Flouration	Curtoso	Storogo
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
88.00	3,242	0	90.60	4,530	10,064
88.05	3,266	163	90.65	4,557	10,291
88.10	3,290	327	90.70	4,584	10,520
88.15	3,314	492	90.75	4,611	10,750
88.20	3,337	658	90.80	4,637	10,981
88.25	3,361	825	90.85	4,664	11,213
88.30	3,385	994	90.90	4,691	11,447
88.35	3,409	1,164	90.95	4,717	11,682
88.40	3,433	1,335	91.00	4,744	11,919
88.45	3,457	1,507	91.05	4,771	12,157
88.50	3,481	1,681	91.10	4,797	12,396
88.55	3,505	1,855	91.15	4,824	12,637
88.60	3,528	2,031	91.20	4,851	12,878
88.65	3,552	2,208	91.25	4,878	13,122
88.70	3,576	2,386	91.30	4,904	13,366
88.75	3,600	2,566	91.35	4,931	13,612
88.80	3,624	2,746	91.40	4,958	13,859
88.85	3,648	2,928	91.45	4,984 5,011	14,108
88.90	3,672 3,605	3,111	91.50 01.55	5,011 5,038	14,358
88.95 89.00	3,695 3,719	3,295 3,481	91.55 91.60	5,038 5,064	14,609 14,862
89.05	3,743	3,667	91.65	5,00 4 5,091	15,115
89.10	3,767	3,855	91.70	5,118	15,371
89.15	3,791	4,044	91.75	5,145	15,627
89.20	3,815	4,234	91.80	5,171	15,885
89.25	3,839	4,425	91.85	5,198	16,144
89.30	3,863	4,618	91.90	5,225	16,405
89.35	3,886	4,812	91.95	5,251	16,667
89.40	3,910	5,007	92.00	5,278	16,930
89.45	3,934	5,203			
89.50	3,958	5,400			
89.55	3,983	5,599			
89.60	4,008	5,798			
89.65	4,034	5,999			
89.70	4,059	6,202			
89.75	4,084	6,405			
89.80 89.85	4,109 4,134	6,610			
89.90	4,134 4,160	6,816 7,024			
89.95	4,185	7,024 7,232			
90.00	4,210	7,442			
90.05	4,237	7,653			
90.10	4,263	7,866			
90.15	4,290	8,080			
90.20	4,317	8,295			
90.25	4,344	8,511			
90.30	4,370	8,729			
90.35	4,397	8,948			
90.40	4,424	9,169			
90.45	4,450	9,391			
90.50	4,477	9,614			
90.55	4,504	9,838			

Page 55

Summary for Link 14L: TOTAL PROPOSED


Inflow Area = 571.713 ac, 2.47% Impervious, Inflow Depth = 2.63" for 25-YR event

Inflow = 638.18 cfs @ 12.33 hrs, Volume= 125.279 af

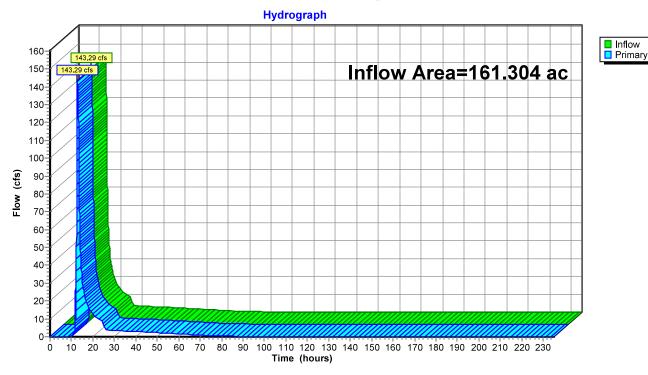
Primary = 638.18 cfs @ 12.33 hrs, Volume= 125.279 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 14L: TOTAL PROPOSED

Page 56

Summary for Link 59L: Discharge Pt 1


Inflow Area = 161.304 ac, 3.97% Impervious, Inflow Depth = 3.10" for 25-YR event

Inflow = 143.29 cfs @ 12.76 hrs, Volume= 41.622 af

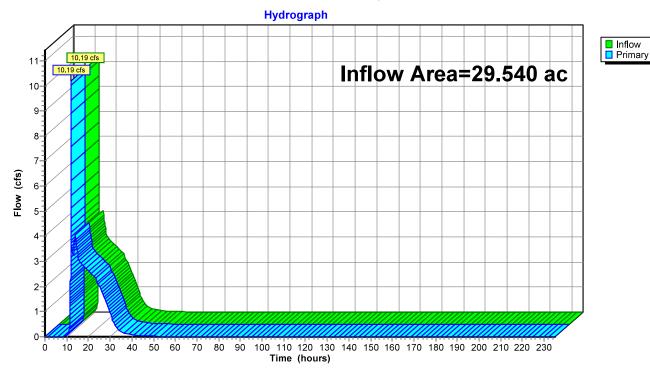
Primary = 143.29 cfs @ 12.76 hrs, Volume= 41.622 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 59L: Discharge Pt 1

Page 57

Summary for Link 60L: Discharge Pt 2


Inflow Area = 29.540 ac, 4.03% Impervious, Inflow Depth = 1.70" for 25-YR event

Inflow = 10.19 cfs @ 11.98 hrs, Volume= 4.183 af

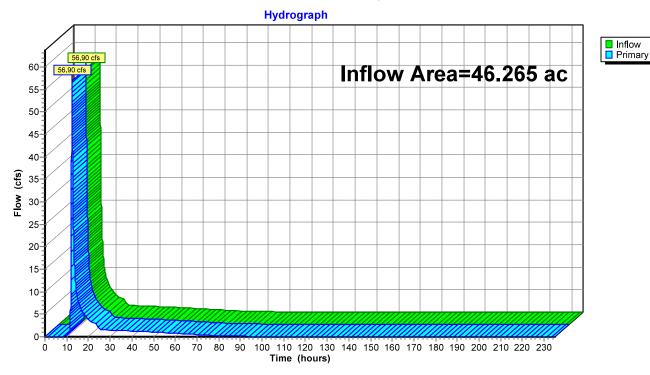
Primary = 10.19 cfs @ 11.98 hrs, Volume= 4.183 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 60L: Discharge Pt 2

Page 58

Summary for Link 61L: Discharge Pt 3


Inflow Area = 46.265 ac, 6.92% Impervious, Inflow Depth = 3.67" for 25-YR event

Inflow = 56.90 cfs @ 12.37 hrs, Volume= 14.146 af

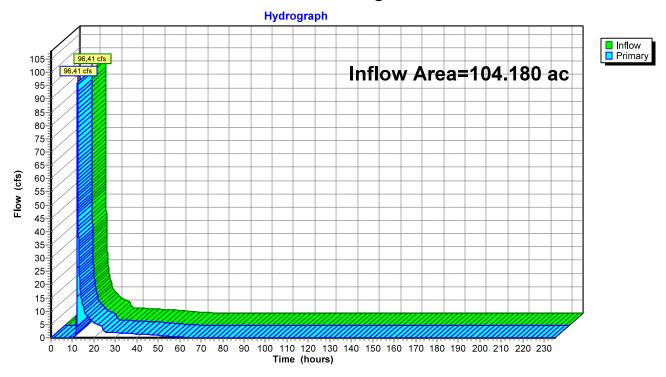
Primary = 56.90 cfs @ 12.37 hrs, Volume= 14.146 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 61L: Discharge Pt 3

Page 59

Summary for Link 62L: Discharge Pt 4


Inflow Area = 104.180 ac, 1.09% Impervious, Inflow Depth = 1.81" for 25-YR event

Inflow = 96.41 cfs @ 12.36 hrs, Volume= 15.691 af

Primary = 96.41 cfs @ 12.36 hrs, Volume= 15.691 af, Atten= 0%, Lag= 0.0 min

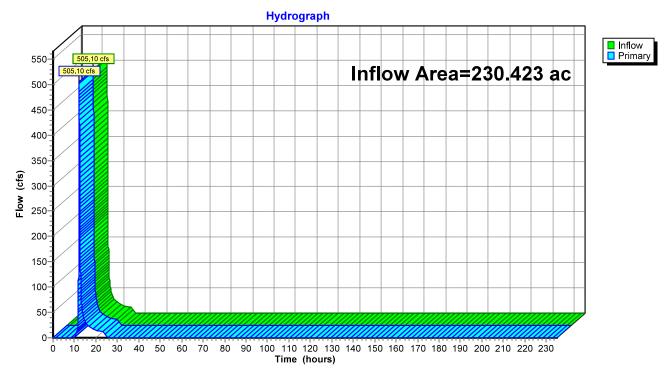
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 62L: Discharge Pt 4

Page 60

<u> Page 60</u>

Summary for Link 63L: P 5


Inflow Area = 230.423 ac, 0.95% Impervious, Inflow Depth = 2.58" for 25-YR event

Inflow = 505.10 cfs @ 12.22 hrs, Volume= 49.637 af

Primary = 505.10 cfs @ 12.22 hrs, Volume= 49.637 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 63L: P 5

CT_Prop Basins_07152020

Type II 24-hr 100-YR NOAA Rainfall=8.50"

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 61

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 5S: PROPOSED TO BASIN Runoff Area=154.439 ac 4.15% Impervious Runoff Depth=5.38" Flow Length=5,552' Tc=33.3 min CN=74 Runoff=672.36 cfs 69.178 af

Subcatchment 6S: PROPOSED TO

Runoff Area=1,207,838 sf 4.29% Impervious Runoff Depth=3.36"
Flow Length=2.643' Tc=17.4 min CN=57 Runoff=110.04 cfs 7.770 af

Subcatchment 7S: PROPOSED TO Runoff Area=1,802,614 sf 7.74% Impervious Runoff Depth=6.22" Flow Length=2,398' Tc=16.0 min CN=81 Runoff=314.99 cfs 21.434 af

Subcatchment 8S: PROPOSED TORunoff Area=4,455,761 sf 1.11% Impervious Runoff Depth=3.60"
Flow Length=3,075' Tc=20.4 min CN=59 Runoff=399.01 cfs 30.651 af

Subcatchment 15S: PROPOSED TO WQv Runoff Area=150,762 sf 8.78% Impervious Runoff Depth=5.38"

Tc=6.0 min CN=74 Runoff=32,48 cfs 1.550 af

Subcatchment 19S: DRAINAGE AREA TO Runoff Area=0.556 ac 8.99% Impervious Runoff Depth=5.38"

Tc=6.0 min CN=74 Runoff=5.22 cfs 0.249 af

Subcatchment 20S: DRAINAGE AREA TO Runoff Area=96.992 ac 0.16% Impervious Runoff Depth=4.66" Flow Length=4,594' Tc=30.4 min CN=68 Runoff=388.58 cfs 37.654 af

Subcatchment 21S: DRAINAGE AREA TO Runoff Area=12.910 ac 1.93% Impervious Runoff Depth=4.30" Flow Length=1,337' Tc=13.2 min CN=65 Runoff=76.44 cfs 4.629 af

Subcatchment 22S: DRAINAGE AREA TO Runoff Area=3,681,542 sf 0.10% Impervious Runoff Depth=4.42" Flow Length=3,556' Tc=26.2 min CN=66 Runoff=353.81 cfs 31.136 af

Subcatchment 51S: ONSITE ACCESS Runoff Area=177,797 sf 24.48% Impervious Runoff Depth=6.10"

Tc=28.6 min CN=80 Runoff=22.03 cfs 2.073 af

Subcatchment 52S: DRAINAGE AREA TO Runoff Area=27.906 ac 1.27% Impervious Runoff Depth=5.61" Flow Length=1,920' Tc=28.5 min CN=76 Runoff=140.08 cfs 13.058 af

Subcatchment 55S: UNMANAGED P 2 Runoff Area=78,944 sf 0.00% Impervious Runoff Depth=5.26"

Tc=6.0 min CN=73 Runoff=16.69 cfs 0.794 af

Subcatchment 56S: UNMANAGED P 1 Runoff Area=299,039 sf 0.00% Impervious Runoff Depth=5.50"

Tc=6.0 min CN=75 Runoff=65.63 cfs 3.144 af

Subcatchment 57S: UNMANAGED P 3 Runoff Area=212,691 sf 0.00% Impervious Runoff Depth=4.90" Tc=6.0 min CN=70 Runoff=42.26 cfs 1.993 af

Subcatchment 58S: UNMANAGED P 4Runoff Area=82,311 sf 0.00% Impervious Runoff Depth=5.98"
Tc=6.0 min CN=79 Runoff=19.32 cfs 0.941 af

Pond 9P: BASIN 1 Peak Elev=90.22' Storage=1,275,872 cf Inflow=672.36 cfs 69.178 af
Outflow=255.13 cfs 69.062 af

CT	Prop	Basins	07152020
\mathbf{c}	LION	Dasilis	01 132020

Type II 24-hr 100-YR NOAA Rainfall=8.50"

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 62

Pond 10P: BASIN 2 Peak Elev=77.93' Storage=107,974 cf Inflow=110.04 cfs 7.770 af

Outflow=58.51 cfs 7.766 af

Pond 11P: BASIN 3 Peak Elev=79.10' Storage=380,892 cf Inflow=314.99 cfs 21.434 af

Outflow=193.46 cfs 21.391 af

Pond 12P: BASIN 4 Peak Elev=88.13' Storage=371,527 cf Inflow=399.01 cfs 30.651 af

Outflow=184.84 cfs 30.645 af

Pond 16P: WQv FACILITY Peak Elev=91.10' Storage=12,385 cf Inflow=32.48 cfs 1.550 af

Outflow=26.48 cfs 1.550 af

Link 14L: TOTAL PROPOSED Inflow=1,520.29 cfs 226.084 af

Primary=1,520.29 cfs 226.084 af

Link 59L: Discharge Pt 1 Inflow=259.19 cfs 72.206 af

Primary=259.19 cfs 72.206 af

Link 60L: Discharge Pt 2 Inflow=60.56 cfs 8.560 af

Primary=60.56 cfs 8.560 af

Link 61L: Discharge Pt 3 Inflow=199.52 cfs 23.384 af

Primary=199.52 cfs 23.384 af

Link 62L: Discharge Pt 4 Inflow=186.83 cfs 31.586 af

Primary=186.83 cfs 31.586 af

Link 63L: P 5 Inflow=946.15 cfs 90.348 af

Primary=946.15 cfs 90.348 af

Total Runoff Area = 571.713 ac Runoff Volume = 226.253 af Average Runoff Depth = 4.75" 97.53% Pervious = 557.579 ac 2.47% Impervious = 14.133 ac

Page 63

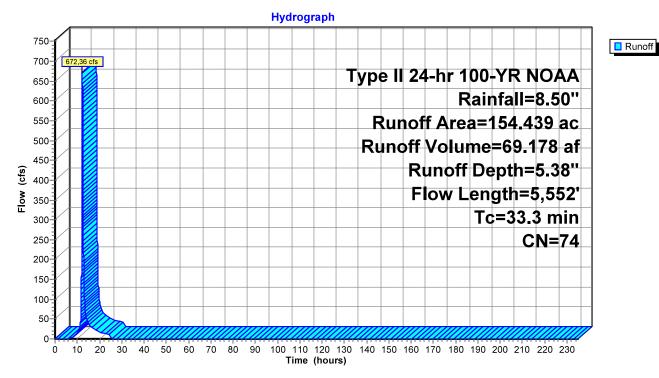
Summary for Subcatchment 5S: PROPOSED TO BASIN 1

672.36 cfs @ 12.28 hrs, Volume= Runoff 69.178 af, Depth= 5.38"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area	(ac) C	N Desc	cription							
*	7.	630 3	30 Woo	ds, Good,	HSG A (OI	NSITE)					
*	3.	008			HSG C (O						
*				Woods, Good, HSG D (ONSITE)							
*				>75% Grass cover, Good, HSG B (ONSITE A SOILS)							
*						, HSG D (ONSITE C SOILS)					
*	6.	297 8	30 >759	% Grass co	over, Good	, HSG D (ONSITE D SOILS)					
*	1.	702			& roofs A						
*	3.	969			& roofs C (
*	0.	736			& roofs D (
*	85.	888		AREA							
*	0.	772	30 Woo	ds, Good,	HSG A OF	FSITE					
*	1.				HSG C OF						
*	9.	257 4		ZONING Á							
*	2.	379	64 RA 2	ONING B	SOIL						
*				ZONING C							
*				ONING D							
	154.			hted Aver							
	148.		•	ious Area	9-						
		407		ervious Are	ea						
	٠.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, u						
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•					
	6.3	100	0.0600	0.26	, ,	Sheet Flow, A-B					
						Grass: Short n= 0.150 P2= 3.20"					
	1.2	295	0.0700	4.26		Shallow Concentrated Flow, B-C					
						Unpaved Kv= 16.1 fps					
	1.3	272	0.0200	3.44	32.28	Trap/Vee/Rect Channel Flow, C-D					
						Bot.W=16.00' D=0.50' Z= 6.0 & 5.0 '/' Top.W=21.50'					
						n= 0.035 Earth, dense weeds					
	6.5	1.025	0.0100	2.64	73.81	Trap/Vee/Rect Channel Flow, D-E					
		-,				Bot.W=55.00' D=0.50' Z= 2.0 '/' Top.W=57.00'					
						n= 0.035 Earth, dense weeds					
	9.4	2,107	0.0200	3.73	104.38	Trap/Vee/Rect Channel Flow, E-F					
	• • •	_,				Bot.W=55.00' D=0.50' Z= 2.0 '/' Top.W=57.00'					
						n= 0.035 Earth, dense weeds					
	0.3	165	0.0050	7.89	55.74						
	0.0	100	0.0000	7.00	00.7 1	Diam= 36.0" Area= 7.1 sf Perim= 9.4' r= 0.75'					
						n= 0.011 Concrete pipe, straight & clean					
	1.1	380	0.0600	5.78	17.35	Trap/Vee/Rect Channel Flow, G-H					
	•••	550	3.0000	50	50	Bot.W=5.00' D=0.50' Z= 2.0 '/' Top.W=7.00'					
						n= 0.035 Earth, dense weeds					
	5.1	724	0.0100	2.36	7.08	Trap/Vee/Rect Channel Flow, H-I					
		. – .	2.2.00			Bot.W=5.00' D=0.50' Z= 2.0 '/' Top.W=7.00'					
						- · · · - - · · ·					

CT_Prop Basins_07152020


Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 64

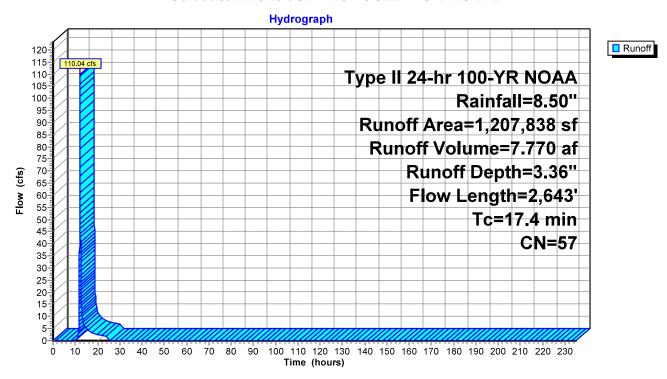
n= 0.035	Earth, d	lense wee	eds		
1.9	376	0.0200	3.34	10.02	Trap/Vee/Rect Channel Flow, I-J
					Bot.W=5.00' D=0.50' Z= 2.0 '/' Top.W=7.00'
					n= 0.035 Earth, dense weeds
0.2	108	0.0050	10.33	164.33	Circular Channel (pipe), J-K
					Diam= 54.0" Area= 15.9 sf Perim= 14.1' r= 1.13'
					n= 0.011 Concrete pipe, straight & clean
33.3	5,552	Total		•	

Subcatchment 5S: PROPOSED TO BASIN 1

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 65

Summary for Subcatchment 6S: PROPOSED TO BASIN 2


Runoff = 110.04 cfs @ 12.10 hrs, Volume= 7.770 af, Depth= 3.36"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Aı	rea (sf)	CN	Description							
*	1	22,667	30	Woods, Good, HSG A (ONSITE)							
*		43,308		Woods, Good, HSG C (ONSITE)							
*		3,323		Woods, Good, HSG D (ONSITE)							
*		75,069				ood, HSG B (ONSITE A SOIL)					
*		93,145				ood, HSG D (ONSITE C SOIL)					
*		12,756				(ONSITE A)					
*		39,104			ing & roofs	(ONSITE C)					
*		42,617		CAP							
*	5	47,893		RA ZONING							
*		9,866		RA ZONING							
		81,020		RA ZONING							
		37,070		RA ZONING							
		07,838		Weighted A							
		55,978 54,860		Pervious Ar							
		51,860		Impervious	Area						
	Тс	Length	Slope	e Velocity	Capacity	Description					
((min)	(feet)	(ft/ft)	,	(cfs)	Description					
	7.4	100				Sheet Flow, A-B					
						Grass: Short n= 0.150 P2= 3.20"					
	3.1	598	0.0400	3.22		Shallow Concentrated Flow, B-C					
						Unpaved Kv= 16.1 fps					
	2.6	697	0.0400	4.43	12.72						
						Bot.W=4.00' D=0.50' Z= 3.5 '/' Top.W=7.50'					
						n= 0.035 Earth, dense weeds					
	1.1	161	0.0100	2.45	11.05	Trap/Vee/Rect Channel Flow, D-E					
						Bot.W=8.00' D=0.50' Z= 2.0 '/' Top.W=10.00'					
		- 4-			10.10	n= 0.035 Earth, dense weeds					
	2.1	545	0.0300	4.25	19.13	Trap/Vee/Rect Channel Flow, E-F					
						Bot.W=8.00' D=0.50' Z= 2.0 '/' Top.W=10.00'					
	0.1	74	0.0700) 22.0E	447 FC	n= 0.035 Earth, dense weeds					
	0.1	74	0.0700	23.95	117.56	Circular Channel (pipe), F-G					
	0.0	305	0.0500	5 5 5 7	30.64						
	0.9	303	0.0500	5.57	30.04						
						· · · · · · · · · · · · · · · · · · ·					
	0.1	163	0.0900	37 15	466 84						
	0.1	100	3.0000	37.10	100.04						
	17.4	2,643	Total								
_	0.9	305 163	0.0500	5.57	30.64	Diam= 30.0" Area= 4.9 sf Perim= 7.9' r= 0.63' n= 0.012					

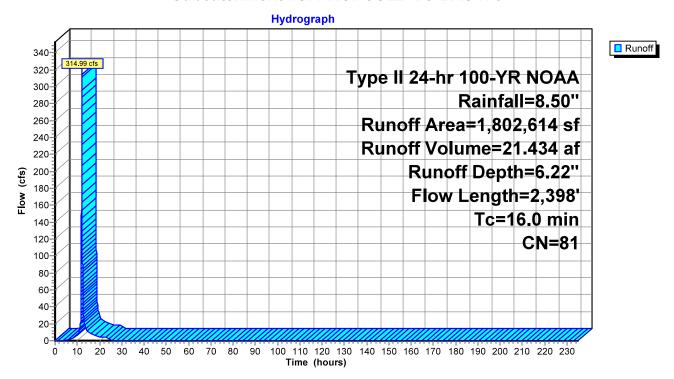
Page 66

Subcatchment 6S: PROPOSED TO BASIN 2

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 67

Summary for Subcatchment 7S: PROPOSED TO BASIN 3


Runoff = 314.99 cfs @ 12.07 hrs, Volume= 21.434 af, Depth= 6.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Α	rea (sf)	CN [N Description							
*		68,751	61 >	1 >75% Grass cover, Good, HSG B (ONSITE A)							
*	2	52,304	80 >75% Grass cover, Good, HSG D (ONSITE C)								
29,508 80 >75% Grass cover, Good, HSG D											
* 9,226 98 Paved parking & roofs (ONSITE A)											
* 110,479 98 Paved parking & roofs (ONSITE C)											
*		19,790	98 F	Paved park	ing & roofs	(ONSITE D)					
*	1,3	12,556	80 (CAP							
1,802,614 81 Weighted Average											
	1,663,119 Pervious Area										
	139,495 Impervious Area				Area						
	Tc	Length	Slope	•	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	1.1	33	0.5000	0.49		Sheet Flow, A-B					
						Grass: Short n= 0.150 P2= 3.20"					
	14.9	2,274	0.0100	2.54	19.03	Trap/Vee/Rect Channel Flow, B-C					
						Bot.W=14.00' D=0.50' Z= 2.0 '/' Top.W=16.00'					
						n= 0.035 Earth, dense weeds					
	0.0	91	0.0600	35.20	691.11	Circular Channel (pipe), C-D					
_						Diam= 60.0" Area= 19.6 sf Perim= 15.7' r= 1.25' n= 0.012					
	16.0	2,398	Total								

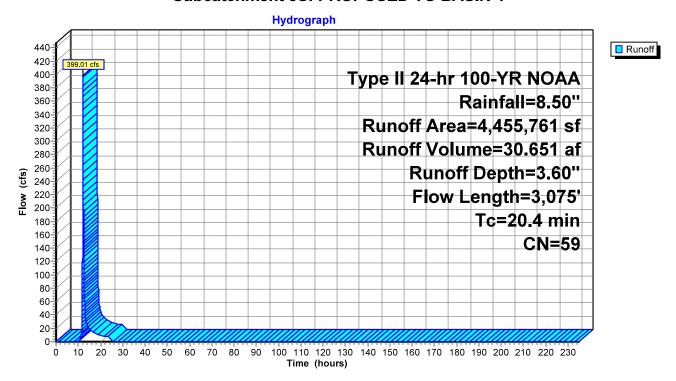
Page 68

Subcatchment 7S: PROPOSED TO BASIN 3

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 69

Summary for Subcatchment 8S: PROPOSED TO BASIN 4


Runoff = 399.01 cfs @ 12.13 hrs, Volume= 30.651 af, Depth= 3.60"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Aı	rea (sf)	CN [Description					
*	3	95,927	30 \	Noods, Go	od, HSG A	(ONSITE)			
*		5,767		Woods, Good, HSG B (ONSITE)					
*	4	04,259	70 \	Woods, Good, HSG C (ONSITE)					
*		35,334				pod, HSG B (ONSITE A)			
*		18,850				ood, HSG C (ONSITE B)			
*	1	98,718	80 >	>75% Gras	s cover, Go	ood, HSG D (ONSITE C)			
		50,619	80 >	>75% Gras	s cover, Go	ood, HSG D			
*	•			Paved park	ing & roofs	(ONSITE A)			
*		16,314	98 F	Paved parking & roofs (ONSITE B)					
*		18,955	98 F	Paved parking & roofs (ONSITE C)					
*		6,703	98 F	Paved park	ing & roofs	(ONSITE D)			
*	1,0	43,104	42 F	RA ZONING	G A SOILS				
*	2	81,741	64 F	RA ZONING	G B SOILS				
*		75,531	76 F	RA ZONING	G C SOILS				
*	6	92,547	50 F	R-2 ZONIN	G A SOILS				
*		99,476			G B SOILS				
*		22,638			G C SOILS				
*	2	81,842	85 F	R-2 ZONIN	<u>G D SOILS</u>				
	4,4	55,761	59 \	Neighted A	verage				
	4,4	06,353	F	Pervious Area					
		49,408		mpervious	Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · ·			
	6.8	100	0.0500	0.25	, ,	Sheet Flow, A-B			
				••					
	0.5					Grass: Short n= 0.150 P2= 3.20"			
		141	0.1000	5.09		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow. B-C			
		141	0.1000	5.09		Shallow Concentrated Flow, B-C			
		141 190	0.1000 0.0700	5.09 6.14	23.43	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps			
	0.5				23.43	Shallow Concentrated Flow, B-C			
					23.43	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D			
					23.43	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25'			
	0.5	190	0.0700	6.14	23.43	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds			
	0.5	190	0.0700	6.14	23.43 15.67	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F			
	0.5 2.8	190 653	0.0700	6.14 3.94		Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps			
	0.5 2.8	190 653	0.0700	6.14 3.94		Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F			
	0.5 2.8	190 653	0.0700	6.14 3.94		Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, F-G			
	0.5 2.8 0.9	190 653 274	0.0700 0.0600 0.0500	6.143.945.01	15.67	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds			
	0.5 2.8 0.9 8.8	190 653 274 1,671	0.0700 0.0600 0.0500 0.0200	6.143.945.013.17	15.67 9.91	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, F-G Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds			
	0.5 2.8 0.9	190 653 274	0.0700 0.0600 0.0500	6.143.945.01	15.67	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, F-G Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, G-H			
	0.5 2.8 0.9 8.8	190 653 274 1,671	0.0700 0.0600 0.0500 0.0200	6.143.945.013.17	15.67 9.91	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, F-G Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, G-H Bot.W=4.50' D=0.50' Z= 2.0 '/' Top.W=6.50'			
	0.5 2.8 0.9 8.8	190 653 274 1,671	0.0700 0.0600 0.0500 0.0200	6.143.945.013.17	15.67 9.91	Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=6.00' D=0.50' Z= 2.0 & 4.5 '/' Top.W=9.25' n= 0.035 Earth, dense weeds Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, E-F Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, F-G Bot.W=4.50' D=0.50' Z= 3.5 '/' Top.W=8.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, G-H			

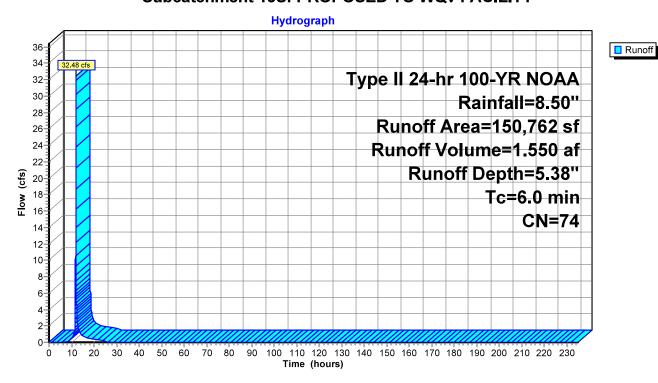
Page 70

Subcatchment 8S: PROPOSED TO BASIN 4

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 71

Summary for Subcatchment 15S: PROPOSED TO WQv FACILITY


32.48 cfs @ 11.97 hrs, Volume= Runoff 1.550 af, Depth= 5.38"

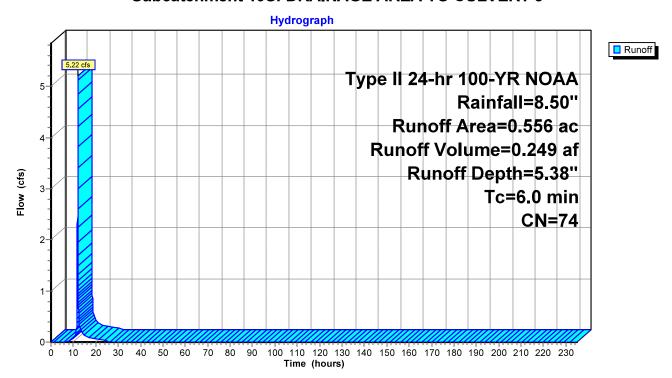
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Are	a (sf)	CN	Description							
	(9,235	55	Woods, Go	od, HSG B						
	6	5,229	70	Woods, Good, HSG C							
*	20	0,647	74	>75% Grass cover, Good, HSG C (ONSITE B)							
*	16	5,945	80	>75% Grass cover, Good, HSG D (ONSITE C)							
*	8	3,756	98	Paved park	ing & roofs	(ONSITE B)					
*	4	1,487	98	Paved park	ing & roofs	(ONSITE C)					
*	65	5,732	70	R-2 ZONIN	G B SOILS						
*	18	3,731	80	R-2 ZONIN	G C SOILS						
	150	0,762	74	Weighted A	verage						
	137	7,519		Pervious Ar	ea						
	13,243 Impervious Area				Area						
	Tc L	ength	Slop	e Velocity	Capacity	Description					
	(min)	(feet)	(ft/f	•	(cfs)	Description					
_		(166t)	(101	(11/3 C C)	(615)	Direct Fater ACCUMED To					
	6.0					Direct Entry, ASSUMED Tc					

Direct Entry, ASSUMED Tc

Subcatchment 15S: PROPOSED TO WQv FACILITY

Page 72


Summary for Subcatchment 19S: DRAINAGE AREA TO CULVERT 3

Runoff = 5.22 cfs @ 11.97 hrs, Volume= 0.249 af, Depth= 5.38"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

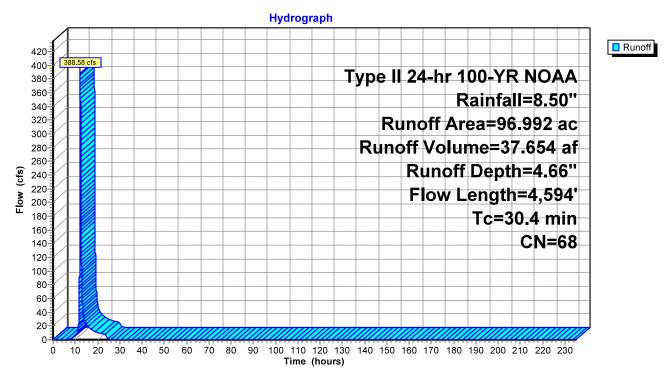
_	Area (ac)	CN	Desc	cription							
*	0.1	150	74	>759	>75% Grass cover, Good, HSG C (DISTURBED B)							
*	0.0	013	80	>759	>75% Grass cover, Good, HSG D (DISTURBED C)							
*	0.0	800	98	Pave	Paved parking & roofs B SOILS							
*	0.0	042	98	Pave	ed parking	& roofs C S	SOILS					
*	0.3	343	70	R-2	ZONING E	SOILS						
	0.556 74 Weighted Average					age						
	0.506 Pervious Area				ious Area	_						
	0.0	050		Impe	ervious Are	ea						
		Leng		Slope	Velocity	Capacity	Description					
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
	6.0						Direct Entry, ASSUMED Tc					

Subcatchment 19S: DRAINAGE AREA TO CULVERT 3

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 73

Summary for Subcatchment 20S: DRAINAGE AREA TO CULVERT 4


Runoff = 388.58 cfs @ 12.26 hrs, Volume= 37.654 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

_	Area	(ac) C	N Desc	cription							
*	0.	193	31 >759	>75% Grass cover, Good, HSG B (DISTURBED A)							
*	0.	776	74 >759	>75% Grass cover, Good, HSG C (DISTURBED B)							
*	0.	003	30 >759	>75% Grass cover, Good, HSG D (DISTURBED C)							
	0.	228	30 >759	% Grass c	over, Good	, HSG D					
*	0.	050	98 Paved parking & roofs A SOILS								
*	0.	073	Paved parking & roofs B SOILS								
*	0.	800	ı								
*	0.	028	98 Pave	ed parking	& roofs D	SOILS					
*	33.	640	50 R-2	ZONING A	SOILS						
*	27.	405	70 R-2	ZONING E	SOILS						
*	19.	119	30 R-2	ZONING (SOILS						
*	15.	469	35 R-2	<u>ZONING E</u>	SOILS						
	96.	992	38 Weig	ghted Avei	rage						
	96.	833	Perv	ious Area							
	0.159		Impe	ervious Are	ea						
	Тс	Length	Slope	Velocity	Capacity	Description					
	Tc (min)	Length (feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	Description					
_				•		Sheet Flow, A-B					
_	(min) 6.8	(feet) 100	(ft/ft) 0.0500	(ft/sec) 0.25		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20"					
	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C					
_	(min) 6.8 4.8	(feet) 100 468	(ft/ft) 0.0500 0.0100	(ft/sec) 0.25 1.61		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps					
_	(min) 6.8	(feet) 100	(ft/ft) 0.0500	(ft/sec) 0.25		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D					
	(min) 6.8 4.8 0.2	(feet) 100 468 83	(ft/ft) 0.0500 0.0100 0.1500	(ft/sec) 0.25 1.61 6.24	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps					
	(min) 6.8 4.8	(feet) 100 468	(ft/ft) 0.0500 0.0100 0.1500	(ft/sec) 0.25 1.61		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E					
	(min) 6.8 4.8 0.2	(feet) 100 468 83	(ft/ft) 0.0500 0.0100 0.1500	(ft/sec) 0.25 1.61 6.24	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00'					
	(min) 6.8 4.8 0.2 14.7	(feet) 100 468 83 3,415	(ft/ft) 0.0500 0.0100 0.1500 0.0300	(ft/sec) 0.25 1.61 6.24 3.88	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00' n= 0.035 Earth, dense weeds					
	(min) 6.8 4.8 0.2	(feet) 100 468 83	(ft/ft) 0.0500 0.0100 0.1500	(ft/sec) 0.25 1.61 6.24	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, E-F					
	(min) 6.8 4.8 0.2 14.7	(feet) 100 468 83 3,415	(ft/ft) 0.0500 0.0100 0.1500 0.0300	(ft/sec) 0.25 1.61 6.24 3.88	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, E-F Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00'					
_	(min) 6.8 4.8 0.2 14.7	(feet) 100 468 83 3,415	(ft/ft) 0.0500 0.0100 0.1500 0.0300	(ft/sec) 0.25 1.61 6.24 3.88	(cfs)	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, D-E Bot.W=5.00' D=0.50' Z= 4.0 '/' Top.W=9.00' n= 0.035 Earth, dense weeds Trap/Vee/Rect Channel Flow, E-F					

Page 74

Subcatchment 20S: DRAINAGE AREA TO CULVERT 4

13.2

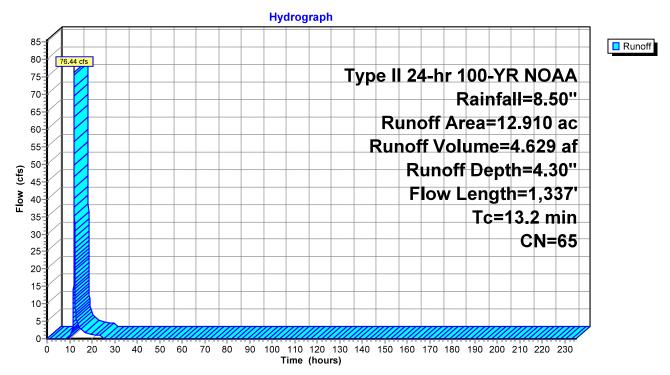
1,337 Total

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 75

Summary for Subcatchment 21S: DRAINAGE AREA TO CULVERT 5


Runoff = 76.44 cfs @ 12.05 hrs, Volume= 4.629 af, Depth= 4.30"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area	(ac)	CN D	escr	iption		
*	0.	467	61 >	75%	Grass co	over, Good,	HSG B (DISTURBED A)
*	0.	546	74 >	75%	Grass co	over, Good,	HSG C (DISTURBED B)
	0.	197	98 P	aved	d parking	& roofs	·
	0.	052	98 P	aved	parking	& roofs	
*	3.	819	50 R	R-2 Z	ONING A	SOILS	
*	6.	875	70 R	R-2 Z	ONING E	SOILS	
*	0.	954	80 R	R-2 Z	ONING C	SOILS	
	12.	910	65 V	Veigh	nted Aver	age	
	12.	661	P	ervic	ous Area	_	
	0.249		9 Impervious Are		ea		
	Тс	Length	n Slo	pe '	Velocity	Capacity	Description
	(min)	(feet) (ft/	/ft)	(ft/sec)	(cfs)	
	7.4	100	0.04	00	0.22		Sheet Flow, A-B
							Grass: Short n= 0.150 P2= 3.20"
	3.1	428	0.02	00	2.28		Shallow Concentrated Flow, B-C
							Unpaved Kv= 16.1 fps
	0.0	10	0.60	00	12.47		Shallow Concentrated Flow, D-E
							Unpaved Kv= 16.1 fps
	2.7	799	0.02	00	4.96	13.30	Trap/Vee/Rect Channel Flow, E-F
							Bot.W=10.00' D=0.25' Z= 1.7 & 4.0 '/' Top.W=11.43'
							n= 0.016 Asphalt, rough

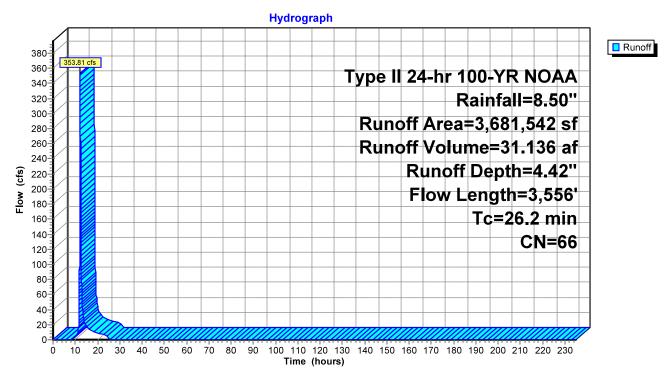
Page 76

Subcatchment 21S: DRAINAGE AREA TO CULVERT 5

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

<u>Page 77</u>

Summary for Subcatchment 22S: DRAINAGE AREA TO CULVERT 6


Runoff = 353.81 cfs @ 12.20 hrs, Volume= 31.136 af, Depth= 4.42"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Α	rea (sf)	CN D	escription							
*		9,867									
		3,623 98 Paved parking & roofs									
*		29,281	50 R-2 ZONING A SOILS								
*		59,738			G B SOILS						
*	1,2	79,033	80 R	2-2 ZONIN	<u>G C SOILS</u>						
	3,6	81,542	66 V	Veighted A	verage						
	3,6	77,919	Р	ervious Ar	ea						
		3,623	Ir	mpervious	Area						
	_										
	Tc	Length	Slope		Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.8	100	0.0500	0.25		Sheet Flow, A-B					
						Grass: Short n= 0.150 P2= 3.20"					
	2.6	700	0.0800	4.55		Shallow Concentrated Flow, B-C					
						Unpaved Kv= 16.1 fps					
	3.8	728	0.0400	3.22		Shallow Concentrated Flow, C-D					
						Unpaved Kv= 16.1 fps					
	5.9	574	0.0100	1.61		Shallow Concentrated Flow, D-E					
						Unpaved Kv= 16.1 fps					
	0.1	53	0.2600	8.21		Shallow Concentrated Flow, E-F					
					10.01	Unpaved Kv= 16.1 fps					
	3.9	850	0.0300	3.60	19.81	Trap/Vee/Rect Channel Flow, F-G					
						Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'					
	0.4		0.0000	0.04	10.17	n= 0.035 Earth, dense weeds					
	3.1	551	0.0200	2.94	16.17	Trap/Vee/Rect Channel Flow, G-H					
						Bot.W=6.00' D=0.50' Z= 10.0 '/' Top.W=16.00'					
						n= 0.035 Earth, dense weeds					
	26.2	3,556	Total								

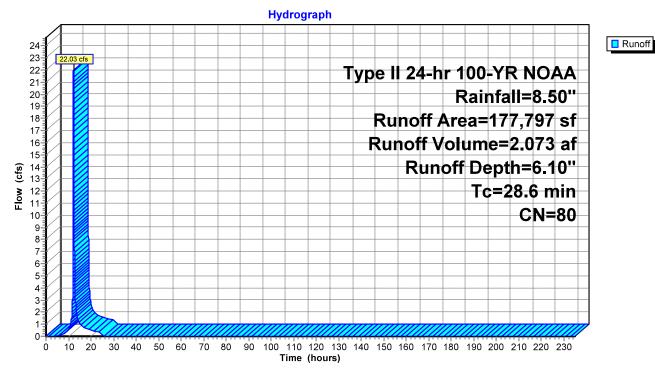
Page 78

Subcatchment 22S: DRAINAGE AREA TO CULVERT 6

Page 79

Summary for Subcatchment 51S: ONSITE ACCESS ROAD (UNMANAGED)

Runoff = 22.03 cfs @ 12.23 hrs, Volume= 2.073 af, Depth= 6.10"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Are	ea (sf)	CN	Description
*	4	10,015	61	>75% Grass cover, Good, HSG B (ONSITE A)
*		9,812	74	>75% Grass cover, Good, HSG C (ONSITE B)
*	6	88,391	80	>75% Grass cover, Good, HSG D (ONSITE C)
	1	6,061	80	>75% Grass cover, Good, HSG D
*	1	2,080	98	Paved parking & roofs (ONSITE A)
*		3,237	98	Paved parking & roofs (ONSITE B)
*	2	24,939	98	Paved parking & roofs (ONSITE C)
*		3,262	98	Paved parking & roofs (ONSITE D)
	17	7,797	80	Weighted Average
	13	34,279		Pervious Area
	4	13,518		Impervious Area
	Tc	Length	Slop	pe Velocity Capacity Description
_	(min)	(feet)	(ft/f	ft) (ft/sec) (cfs)

28.6

Direct Entry, SEE Tc CALC FOR AREA TO CULVERT 6

Subcatchment 51S: ONSITE ACCESS ROAD (UNMANAGED)

28.5

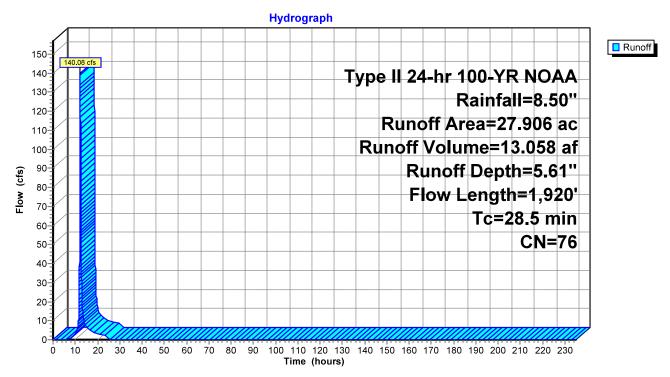
1,920 Total

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 80

Summary for Subcatchment 52S: DRAINAGE AREA TO CULVERT 7


Runoff = 140.08 cfs @ 12.22 hrs, Volume= 13.058 af, Depth= 5.61"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area	(ac) C	N Desc	cription		
*	1.	525	30 >759	% Grass co	over, Good	, HSG D (DISTURBED C)
*	0.	201	30 >75°	% Grass c	over, Good	, HSG D (DISTURBED D)
*	0.	303	98 Pave	ed parking	& roofs C	SOILS
*	0.	052	98 Pave	ed parking	& roofs D	SOILS
*	3.	110	50 R-2	ZONING A	SOILS	
*	4.	062	70 R-2	ZONING E	SOILS	
*	13.	425		ZONING C		
*	5.	228	35 R-2	<u>ZONING E</u>	SOILS	
	27.	906	76 Wei	ghted Aver	age	
	27.	551	Perv	ious Area		
	0.	355	Impe	ervious Are	ea	
	_		01			
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.9	100	0.0500	0.11		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	0.6	145	0.0700	4.26		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	5.9	986	0.0300	2.79		Shallow Concentrated Flow, C-D
	- .	000	0.0400	4.64		Unpaved Kv= 16.1 fps
	7.1	689	0.0100	1.61		Shallow Concentrated Flow, D-E
						Unpaved Kv= 16.1 fps

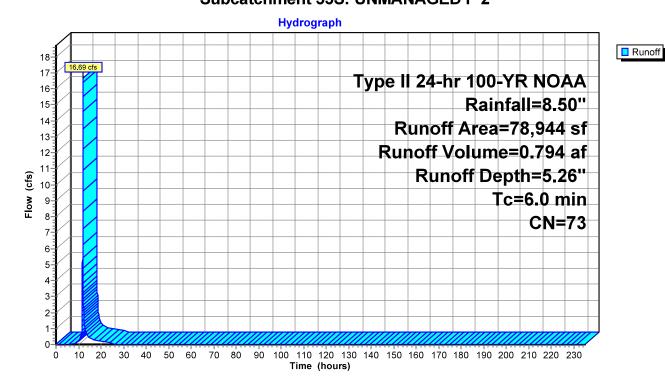
Page 81

Subcatchment 52S: DRAINAGE AREA TO CULVERT 7

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 82


Summary for Subcatchment 55S: UNMANAGED P 2

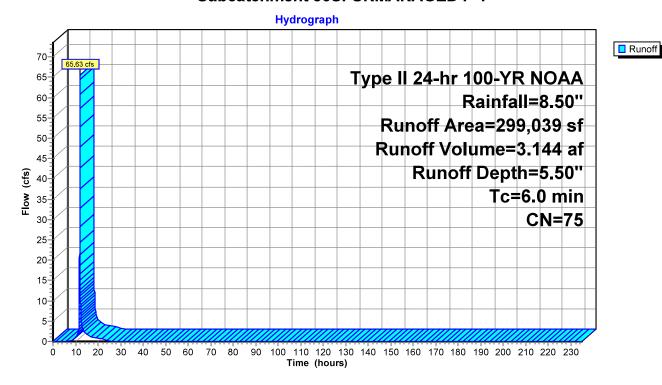
Runoff = 16.69 cfs @ 11.97 hrs, Volume= 0.794 af, Depth= 5.26"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Αı	rea (sf)	CN	Description							
		7,354	70	Woods, Go	Woods, Good, HSG C						
		7,236	77	Woods, Go	Woods, Good, HSG D						
*		24,838	61	>75% Gras	>75% Grass cover, Good, HSG B (ONSITE A)						
*		25,224	80	>75% Grass cover, Good, HSG D (ONSITE C)							
		14,292	80	>75% Gras	-75% Grass cover, Good, HSG D						
		78,944	73	Weighted A	verage						
		78,944		Pervious Ar	ea						
	Тс	Length	Slope	e Velocity	Capacity	Description					
(n	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	6.0					Direct Entry, ASSUMED Tc					

Subcatchment 55S: UNMANAGED P 2

Page 83


Summary for Subcatchment 56S: UNMANAGED P 1

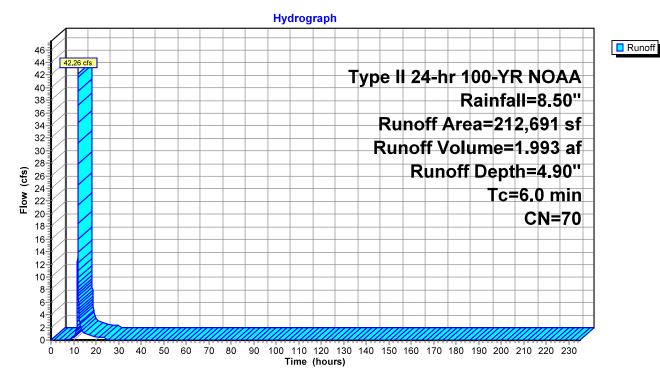
Runoff = 65.63 cfs @ 11.97 hrs, Volume= 3.144 af, Depth= 5.50"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Αı	rea (sf)	CN	Description							
		4,400	30	Woods, Go	od, HSG A						
		86,031	70	Woods, Go	Noods, Good, HSG C						
	1	84,912	77	Noods, Good, HSG D							
*		2,047	80	>75% Gras	s cover, Go	ood, HSG D (ONSITE C)					
		21,649	80	80 >75% Grass cover, Good, HSG D							
	2	99,039	75	Weighted A	verage						
	2	99,039		Pervious Ar	ea						
	Tc	Length	Slop	e Velocity	Capacity	Description					
(I	min)	(feet)	(ft/f1) (ft/sec)	(cfs)						
	6.0					Direct Entry, ASSUMED Tc					

Subcatchment 56S: UNMANAGED P 1

Page 84


Summary for Subcatchment 57S: UNMANAGED P 3

Runoff = 42.26 cfs @ 11.97 hrs, Volume= 1.993 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

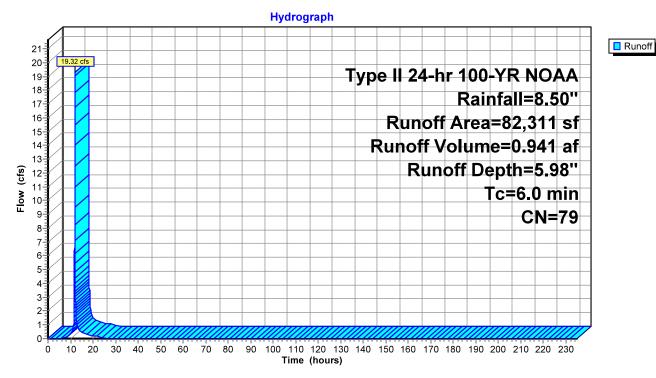
	Area (sf)	CN	Description					
	25,681	30	Woods, Good, HSG A					
	11,227	70	Woods, Good, HSG C					
	20,676	77	Woods, Good, HSG D					
*	37,410	61	>75% Grass cover, Good, HSG B (ONSITE A)					
*	32,984	80	>75% Grass cover, Good, HSG D (ONSITE C)					
	84,713	80	>75% Grass cover, Good, HSG D					
	212,691	70	Weighted Average					
	212,691		Pervious Area					
	Tc Length (min) (feet)		· · · · · · · · · · · · · · · · · · ·					
	6.0		Direct Entry, ASSUMED Tc					

Subcatchment 57S: UNMANAGED P 3

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 85

Summary for Subcatchment 58S: UNMANAGED P 4


19.32 cfs @ 11.97 hrs, Volume= Runoff 0.941 af, Depth= 5.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Α	rea (sf)	CN	Description							
*		3,590	61	>75% Gras	s cover, Go	ood, HSG B (ONSITE A)					
*	•	5,089	74	>75% Gras	>75% Grass cover, Good, HSG C (ONSITE B)						
*		14,725	80	>75% Gras	75% Grass cover, Good, HSG D (ONSITE C)						
		58,907	80	>75% Gras	75% Grass cover, Good, HSG D						
		82,311 82,311	79	Weighted A Pervious A	•						
_	Tc (min)	Length (feet)	Slop (ft/ft	•	Capacity (cfs)	Description					
	6.0					Direct Entry, ASSUMED Tc					

Direct Entry, ASSUMED Tc

Subcatchment 58S: UNMANAGED P 4

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 86

Summary for Pond 9P: BASIN 1

Inflow Area = 154.439 ac, 4.15% Impervious, Inflow Depth = 5.38" for 100-YR NOAA event

672.36 cfs @ 12.28 hrs, Volume= Inflow 69.178 af

255.13 cfs @ 12.73 hrs, Volume= 69.062 af, Atten= 62%, Lag= 27.2 min Outflow

Primary 255.13 cfs @ 12.73 hrs, Volume= 69.062 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 90.22' @ 12.73 hrs Surf.Area= 163,588 sf Storage= 1,275,872 cf

Plug-Flow detention time= 374.2 min calculated for 69.060 af (100% of inflow)

Center-of-Mass det. time= 373.6 min (1,209.7 - 836.0)

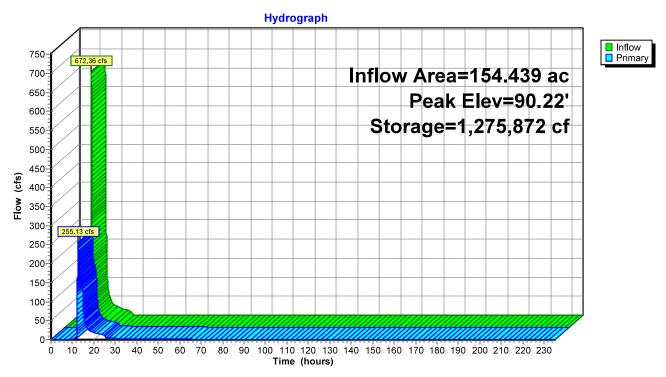
Volume	Invert	Avail.Storage	Storage Description
#1	81.00'	1,573,213 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
81.00	110,353	Ó	0
82.00	113,238	111,796	111,796
82.50	114,690	56,982	168,778
83.00	128,912	60,901	229,678
87.00	144,633	547,090	776,768
89.00	157,733	302,366	1,079,134
91.00	167,296	325,029	1,404,163
92.00	170,803	169,050	1,573,213

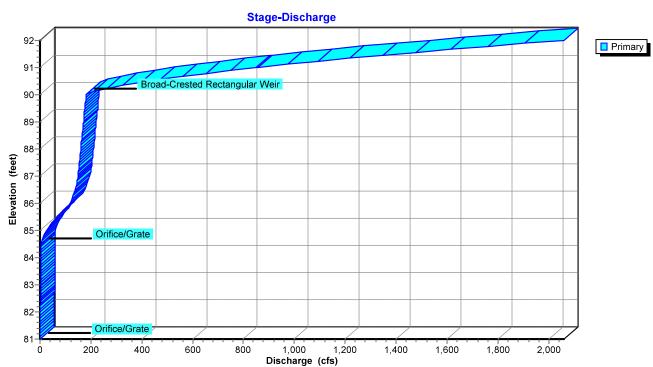
Device	Routing	Invert	Outlet Devices
#1	Primary	79.00'	48.0" x 70.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	·		Outlet Invert= 78.66' S= 0.0049 '/' Cc= 0.900 n= 0.012
#2	Device 1	81.00'	9.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	84.50'	3.00' x 6.50' Horiz. Orifice/Grate Limited to weir flow C= 0.600
#4	Primary	90.00'	250.0' long x 20.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=255.06 cfs @ 12.73 hrs HW=90.22' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 183.77 cfs @ 14.62 fps)


2=Orifice/Grate (Passes < 6.33 cfs potential flow)

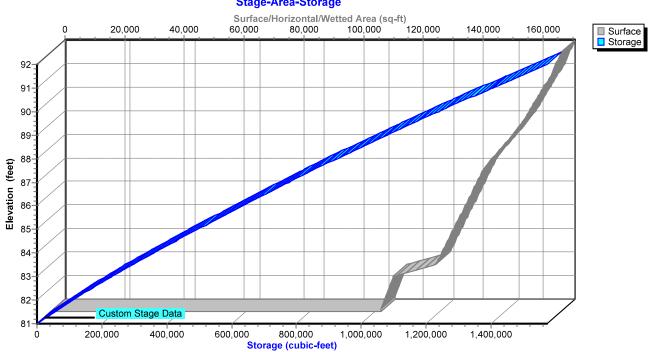
-3=Orifice/Grate (Passes < 224.64 cfs potential flow)


-4=Broad-Crested Rectangular Weir (Weir Controls 71.29 cfs @ 1.27 fps)

Page 87

Pond 9P: BASIN 1

Pond 9P: BASIN 1


Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 88

Pond 9P: BASIN 1

Stage-Area-Storage

Page 89

Stage-Discharge for Pond 9P: BASIN 1

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
81.00	0.00	84.12	3.52	87.24	151.15	90.36	330.70
81.06	0.00	84.18	3.56	87.24 87.30	151.15	90.42	369.44
81.12	0.01	84.24	3.60	87.36	151.67	90.48	410.77
81.18	0.03	84.30	3.64	87.42	153.31	90.54	454.74
81.24	0.12	84.36	3.68	87.48	154.03	90.60	501.19
81.30	0.31	84.42	3.71	87.54	154.74	90.66	547.57
81.36	0.43	84.48	3.75	87.60	155.44	90.72	595.53
81.42	0.56	84.54	4.28	87.66	156.15	90.78	644.92
81.48	0.70	84.60	5.78	87.72	156.85	90.84	697.53
81.54	0.85	84.66	7.83	87.78	157.55	90.90	752.83
81.60	1.00	84.72	10.30	87.84	158.25	90.96	809.87
81.66	1.14	84.78	13.13	87.90	158.94	91.02	869.11
81.72	1.26	84.84	16.28	87.96	159.63	91.08	931.18
81.78	1.35	84.90	19.71	88.02	160.31	91.14	995.10
81.84	1.45	84.96	23.41	88.08	161.00	91.20	1,060.84
81.90	1.54	85.02	27.36	88.14	161.68	91.26	1,127.28
81.96	1.63	85.08	31.54	88.20	162.36	91.32	1,195.31
82.02	1.71	85.14	35.94	88.26	163.03	91.38	1,264.89
82.08	1.79	85.20	40.55	88.32	163.70	91.44	1,335.12
82.14	1.86	85.26	45.36	88.38	164.37	91.50	1,406.27
82.20	1.93	85.32	50.36	88.44	165.04	91.56	1,478.70
82.26	2.00	85.38	55.55	88.50	165.70	91.62	1,552.90
82.32	2.07	85.44	60.91	88.56	166.37	91.68	1,629.46
82.38	2.13	85.50	66.45	88.62	167.03	91.74	1,707.40
82.44	2.20	85.56	72.16	88.68	167.68	91.80	1,786.68
82.50	2.26	85.62	78.03	88.74	168.34	91.86	1,867.28
82.56	2.32	85.68 85.74	84.05	88.80	168.99	91.92	1,949.18
82.62 82.68	2.37 2.43	85.74 85.80	90.23 96.57	88.86 88.92	169.63 170.28	91.98	2,032.36
82.74	2.43	85.86	103.04	88.98	170.28		
82.80	2.49	85.92	103.04	89.04	170.52		
82.86	2.59	85.98	116.43	89.10	171.37		
82.92	2.64	86.04	121.11	89.16	172.84		
82.98	2.69	86.10	123.39	89.22	173.48		
83.04	2.74	86.16	125.62	89.28	174.11		
83.10	2.79	86.22	127.82	89.34	174.74		
83.16	2.84	86.28	129.98	89.40	175.37		
83.22	2.89	86.34	132.10	89.46	175.99		
83.28	2.94	86.40	134.19	89.52	176.61		
83.34	2.98	86.46	136.25	89.58	177.23		
83.40	3.03	86.52	138.27	89.64	177.85		
83.46	3.07	86.58	140.27	89.70	178.47		
83.52	3.12	86.64	142.23	89.76	179.08		
83.58	3.16	86.70	144.17	89.82	179.70		
83.64	3.20	86.76	145.22	89.88	180.31		
83.70	3.24	86.82	145.97	89.94	180.91		
83.76	3.29	86.88	146.72	90.00	181.52		
83.82	3.33	86.94	147.47	90.06	191.97		
83.88	3.37	87.00 87.06	148.21	90.12	210.58		
83.94 84.00	3.41	87.06 87.12	148.95	90.18 90.24	234.49		
84.00 84.06	3.45 3.49	87.12 87.18	149.69 150.42	90.24	262.82 295.02		
04.00	5.45] 37.10	100.42] 30.30	233.02		
		I		ı		1	

Page 90

Stage-Area-Storage for Pond 9P: BASIN 1

					
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
81.00	110,353	0	88.80	156,423	1,047,718
81.15	110,786	16,585	88.95	157,406	1,071,256
81.30	111,218	33,236	89.10	158,211	1,094,931
81.45	111,651	49,951	89.25	158,928	1,118,717
81.60	112,084	66,731	89.40	159,646	1,142,610
81.75	112,517	83,576	89.55	160,363	1,166,610
81.90	112,950	100,486	89.70	161,080	1,190,719
82.05	113,383	117,461	89.85	161,797	1,214,934
82.20	113,819	134,501	90.00	162,515	1,239,258
82.35	114,254	151,607	90.15	163,232	1,263,689
82.50	114,690	168,778	90.30	163,949	1,288,227
82.65	118,957	186,301	90.45	164,666	1,312,873
82.80	123,223	204,464	90.60	165,383	1,337,627
82.95	127,490	223,268	90.75	166,101	1,362,488
83.10	129,305	242,589	90.90	166,818	1,387,457
83.25	129,895	262,029	91.05	167,471	
		281,557	91.03	167,997	1,412,532
83.40	130,484 131,074				1,437,692
83.55	131,663	301,174	91.35	168,523	1,462,931
83.70		320,879 340,673	91.50	169,050 169,576	1,488,249
83.85	132,253	340,673	91.65	•	1,513,646
84.00 84.15	132,842	360,555 380,536	91.80	170,102	1,539,122
84.15	133,432	380,526	91.95	170,628	1,564,677
84.30	134,021	400,585			
84.45	134,611	420,732			
84.60 84.75	135,200	440,968			
84.75	135,790	461,292 481,705			
84.90 85.05	136,379	481,705			
85.05 85.20	136,969	502,206			
85.20	137,559	522,796			
85.35	138,148	543,474			
85.50	138,738	564,240			
85.65	139,327	585,095			
85.80	139,917	606,038			
85.95	140,506	627,070			
86.10	141,096	648,190			
86.25	141,685	669,399			
86.40	142,275	690,696 743,084			
86.55 86.70	142,864	712,081			
86.70	143,454	733,555			
86.85	144,043	755,117			
87.00 87.45	144,633	776,768			
87.15	145,616	798,537			
87.30 87.45	146,598	820,453 843,516			
87.45 87.60	147,581	842,516			
87.60 87.75	148,563	864,727			
87.75 87.00	149,546	887,085			
87.90	150,528	909,590			
88.05	151,510	932,243			
88.20	152,493	955,044			
88.35	153,475	977,991			
88.50	154,458	1,001,086			
88.65	155,441	1,024,329			

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

<u>Page 91</u>

Summary for Pond 10P: BASIN 2

Inflow Area = 27.728 ac, 4.29% Impervious, Inflow Depth = 3.36" for 100-YR NOAA event

Inflow = 110.04 cfs @ 12.10 hrs, Volume= 7.770 af

Outflow = 58.51 cfs @ 12.28 hrs, Volume= 7.766 af, Atten= 47%, Lag= 10.5 min

Primary = 58.51 cfs @ 12.28 hrs, Volume= 7.766 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 77.93' @ 12.28 hrs Surf.Area= 34,388 sf Storage= 107,974 cf

Plug-Flow detention time= 248.0 min calculated for 7.766 af (100% of inflow)

Center-of-Mass det. time= 248.2 min (1,105.0 - 856.8)

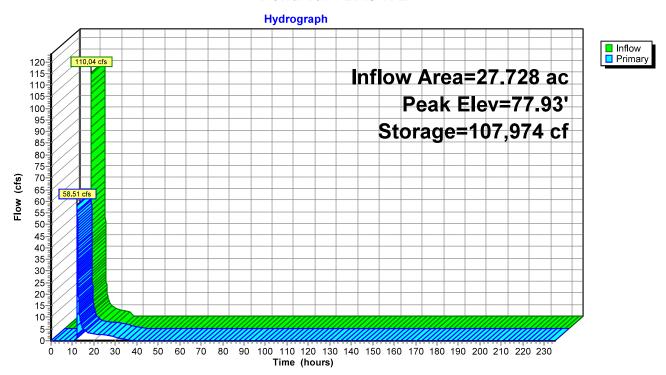
Volume	Invert	Avail.Storage	Storage Description
#1	74.00'	183,706 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
74.00	21,185	0	0
75.00	22,367	21,776	21,776
75.50	22,967	11,334	33,110
76.00	29,696	13,166	46,275
78.00	34,569	64,265	110,540
80.00	38,597	73,166	183,706

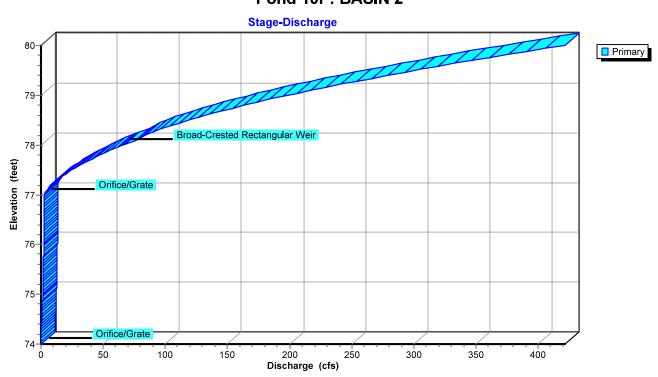
Device	Routing	Invert	Outlet Devices
#1	Primary	72.00'	36.0" x 51.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	•		Outlet Invert= 71.75' S= 0.0049 '/' Cc= 0.900 n= 0.012
#2	Device 1	74.00'	8.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	77.00'	3.00' x 6.50' Horiz. Orifice/Grate Limited to weir flow C= 0.600
#4	Primary	78.00'	45.0' long x 25.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=58.50 cfs @ 12.28 hrs HW=77.93' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 58.50 cfs of 71.60 cfs potential flow)


—2=Orifice/Grate (Orifice Controls 3.19 cfs @ 9.13 fps)

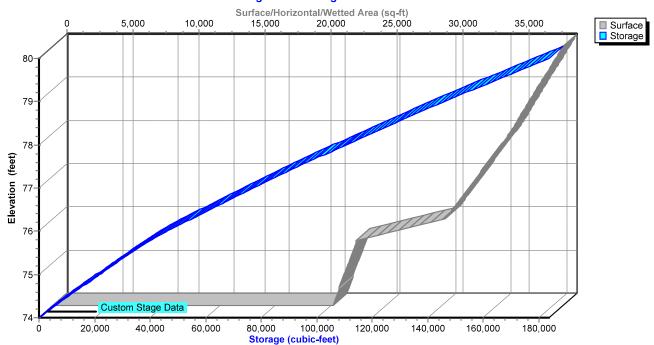
3=Orifice/Grate (Weir Controls 55.32 cfs @ 3.15 fps)


-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 92

Pond 10P: BASIN 2

Pond 10P: BASIN 2


Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 93

Pond 10P: BASIN 2

Stage-Area-Storage

Page 94

Stage-Discharge for Pond 10P: BASIN 2

Elevation	Drimory	Elevation	Drimon	Elevation	Drimory
(feet)	Primary (cfs)	(feet)	Primary (cfs)	(feet)	Primary (cfs)
74.00	0.00	76.08	2.22	78.16	81.19
74.04	0.01	76.12	2.25	78.20	84.57
74.08	0.02	76.16	2.27	78.24	88.30
74.12	0.05	76.20	2.30	78.28	92.33
74.16	0.09	76.24	2.32	78.32	96.65
74.20	0.13	76.28	2.35	78.36	101.24
74.24 74.28	0.19 0.25	76.32 76.36	2.37 2.39	78.40 78.44	106.08 111.11
74.26 74.32	0.23	76.40	2.39	78.44 78.48	116.36
74.36	0.39	76.44	2.44	78.52	121.82
74.40	0.47	76.48	2.46	78.56	127.48
74.44	0.55	76.52	2.49	78.60	133.33
74.48	0.63	76.56	2.51	78.64	139.09
74.52	0.72	76.60	2.53	78.68	144.99
74.56	0.80	76.64	2.55	78.72	151.00
74.60 74.64	0.87 0.94	76.68 76.72	2.57 2.60	78.76 78.80	157.13 163.36
74.64 74.68	0.94	76.72 76.76	2.62	78.84	170.04
74.72	1.05	76.80	2.64	78.88	176.87
74.76	1.10	76.84	2.66	78.92	183.83
74.80	1.15	76.88	2.68	78.96	190.93
74.84	1.20	76.92	2.70	79.00	198.17
74.88	1.24	76.96	2.72	79.04	205.73
74.92	1.29	77.00	2.74	79.08	213.43
74.96 75.00	1.33 1.37	77.04 77.08	3.26 4.19	79.12 79.16	221.29 229.28
75.00 75.04	1.37	77.08 77.12	5.39	79.16	229.20
75.08	1.45	77.12	6.80	79.24	245.58
75.12	1.49	77.20	8.40	79.28	253.87
75.16	1.53	77.24	10.17	79.32	262.28
75.20	1.56	77.28	12.09	79.36	270.81
75.24	1.60	77.32	14.15	79.40	279.46
75.28 75.32	1.64	77.36	16.34	79.44	288.08
75.32 75.36	1.67 1.70	77.40 77.44	18.66 21.10	79.48 79.52	296.80 305.63
75.40	1.74	77.44 77.48	23.64	79.52 79.56	314.56
75.44	1.77	77.52	26.30	79.60	323.58
75.48	1.80	77.56	29.06	79.64	332.90
75.52	1.83	77.60	31.91	79.68	342.32
75.56	1.86	77.64	34.87	79.72	351.85
75.60	1.89	77.68	37.91	79.76	361.49
75.64 75.68	1.92 1.95	77.72 77.76	41.05 44.28	79.80 79.84	371.24 381.09
75.72	1.98	77.76 77.80	44.28 47.59	79.88	391.09
75.76	2.01	77.84	50.98	79.92	401.10
75.80	2.04	77.88	54.45	79.96	411.26
75.84	2.06	77.92	58.01	80.00	421.52
75.88	2.09	77.96	61.64		
75.92	2.12	78.00	65.35		
75.96	2.14	78.04	70.10		
76.00 76.04	2.17 2.20	78.08 78.12	75.57 78.17		
70.04	2.20	/ 0.12	70.17		
	Į.	1		•	

Storage

153,473

157,182

160,911 164,660

168,429

172,218

176,027

179,857

183,706

(cubic-feet)

Printed 7/18/2020

<u> Page 95</u>

Stage-Area-Storage for Pond 10P: BASIN 2

Surface

(sq-ft)

36,986

37,187

37,389

37,590 37,791

37,993

38,194

38,396

38,597

		Otage-Area-e	torage for r on
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)
74.00	21,185	0	79.20
74.10	21,303	2,124	79.30
74.20	21,421	4,261	79.40
74.30	21,540	6,409	79.50
74.40	21,658	8,569	79.60
74.50 74.50	21,776	10,740	79.70 79.70
74.60	21,770	12,924	79.80
74.70	22,012	15,119	79.90
74.80	22,131	17,326	80.00
74.90	22,249	19,545	00.00
75.00	22,367	21,776	
75.10	22,487	24,019	
75.20	22,607	26,273	
75.30	22,727	28,540	
75.40	22,847	30,819	
75.50	22,967	33,110	
75.60	24,313	35,473	
75.70	25,659	37,972	
75.80	27,004	40,605	
75.90	28,350	43,373	
76.00	29,696	46,275	
76.10	29,940	49,257	
76.20	30,183	52,263	
76.30	30,427	55,294	
76.40	30,671	58,349	
76.50 76.60	30,914 31,158	61,428 64,531	
76.70	31,402	67,659	
76.80	31,645	70,812	
76.90	31,889	73,988	
77.00	32,133	77,190	
77.10	32,376	80,415	
77.20	32,620	83,665	
77.30	32,863	86,939	
77.40	33,107	90,237	
77.50	33,351	93,560	
77.60	33,594	96,908	
77.70	33,838	100,279	
77.80	34,082	103,675	
77.90	34,325	107,096	
78.00	34,569	110,540	
78.10 78.20	34,770 34,972	114,007	
78.30	35,173	117,494 121,002	
78.40	35,375	124,529	
78.50	35,576	128,077	
78.60	35,777	131,644	
78.70	35,979	135,232	
78.80	36,180	138,840	
78.90	36,382	142,468	
79.00	36,583	146,116	
79.10	36,784	149,785	

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 96

Summary for Pond 11P: BASIN 3

Inflow Area = 41.382 ac, 7.74% Impervious, Inflow Depth = 6.22" for 100-YR NOAA event

Inflow = 314.99 cfs @ 12.07 hrs, Volume= 21.434 af

Outflow = 193.46 cfs @ 12.21 hrs, Volume= 21.391 af, Atten= 39%, Lag= 8.3 min

Primary = 193.46 cfs @ 12.21 hrs, Volume= 21.391 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 79.10' @ 12.21 hrs Surf.Area= 88,109 sf Storage= 380,892 cf

Plug-Flow detention time= 550.2 min calculated for 21.390 af (100% of inflow)

Center-of-Mass det. time= 549.4 min (1,353.9 - 804.4)

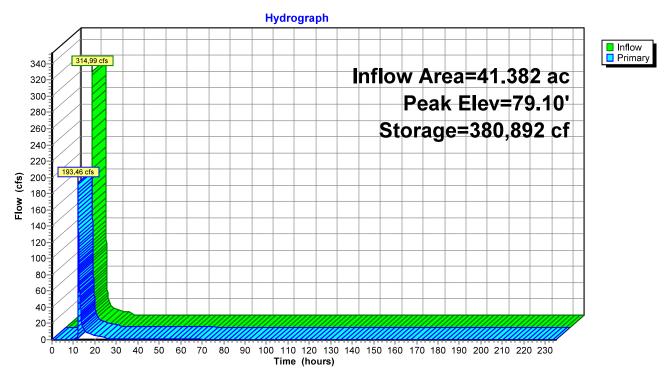
Volume	Invert	Avail.Storage	Storage Description
#1	74.00'	461,645 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
74.00	59,381	0	0
75.00	61,618	60,500	60,500
75.50	62,746	31,091	91,591
76.00	75,824	34,643	126,233
78.00	84,101	159,925	286,158
80.00	91,386	175,487	461,645

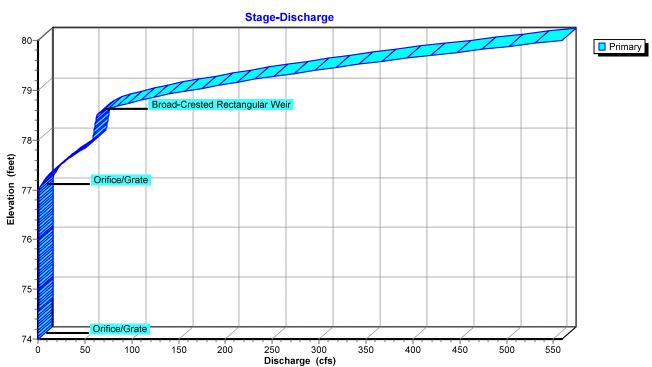
Device	Routing	Invert	Outlet Devices
#1	Primary	73.10'	36.0" x 220.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	•		Outlet Invert= 72.00' S= 0.0050 '/' Cc= 0.900 n= 0.012
#2	Device 1	74.00'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	77.00'	3.00' x 6.50' Horiz. Orifice/Grate Limited to weir flow C= 0.600
#4	Primary	78.50'	100.0' long x 25.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=193.35 cfs @ 12.21 hrs HW=79.10' TW=0.00' (Dynamic Tailwater)

−1=Culvert (Barrel Controls 67.91 cfs @ 9.61 fps)


2=Orifice/Grate (Passes < 2.08 cfs potential flow)

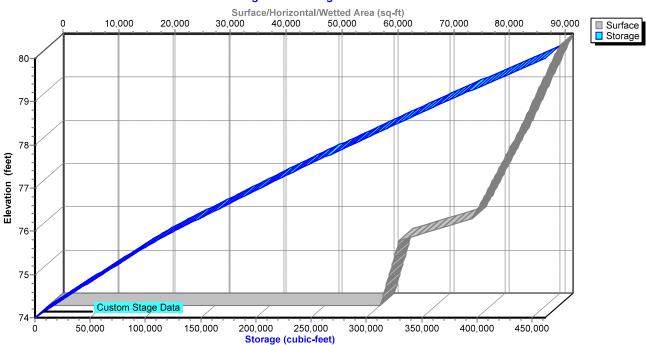
3=Orifice/Grate (Passes < 136.06 cfs potential flow)


-4=Broad-Crested Rectangular Weir (Weir Controls 125.44 cfs @ 2.09 fps)

Page 97

Pond 11P: BASIN 3

Pond 11P: BASIN 3


Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 98

Pond 11P: BASIN 3

Stage-Area-Storage

Printed 7/18/2020 Page 99

Stage-Discharge for Pond 11P: BASIN 3

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
74.00	0.00	76.08	1.28	78.16	59.62
74.04	0.01	76.12	1.29	78.20	59.99
74.08	0.02	76.16	1.31	78.24	60.37
74.12	0.04	76.20	1.32	78.28	60.74
74.16	0.07	76.24	1.33	78.32	61.11
74.20	0.11	76.28	1.35	78.36	61.48
74.24	0.16	76.32	1.36	78.40	61.84
74.28	0.20	76.36	1.37	78.44	62.20
74.32	0.26	76.40 76.44	1.39	78.48	62.56
74.36 74.40	0.31 0.36	76.44 76.48	1.40 1.41	78.52 78.56	63.68 67.22
74.44 74.44	0.30	76.46 76.52	1.42	78.60	72.11
74.48	0.46	76.56	1.44	78.64	78.02
74.52	0.49	76.60	1.45	78.68	84.80
74.56	0.53	76.64	1.46	78.72	92.36
74.60	0.56	76.68	1.47	78.76	100.64
74.64	0.59	76.72	1.49	78.80	109.58
74.68	0.62	76.76	1.50	78.84	119.13
74.72	0.65	76.80	1.51	78.88 78.83	129.26
74.76 74.80	0.68 0.70	76.84 76.88	1.52 1.53	78.92 78.96	139.89 150.98
74.84	0.70	76.88 76.92	1.54	78.90 79.00	162.53
74.88	0.75	76.96	1.56	79.04	174.55
74.92	0.77	77.00	1.57	79.08	187.01
74.96	0.80	77.04	2.08	79.12	199.59
75.00	0.82	77.08	3.00	79.16	212.21
75.04	0.84	77.12	4.18	79.20	225.10
75.08	0.86	77.16	5.59	79.24	238.26
75.12	0.88	77.20	7.18	79.28	251.66
75.16 75.20	0.90 0.92	77.24 77.28	8.94 10.85	79.32 79.36	265.66 280.34
75.24	0.94	77.32	12.90	79.30 79.40	295.33
75.28	0.96	77.36	15.09	79.44	310.63
75.32	0.98	77.40	17.40	79.48	326.23
75.36	1.00	77.44	19.82	79.52	342.33
75.40	1.01	77.48	22.36	79.56	358.97
75.44	1.03	77.52	25.01	79.60	375.93
75.48	1.05	77.56	27.76	79.64	393.21
75.52	1.07	77.60	30.61 33.55	79.68	410.82
75.56 75.60	1.08 1.10	77.64 77.68	36.59	79.72 79.76	428.61 446.56
75.64	1.10	77.72	39.72	79.70 79.80	464.79
75.68	1.13	77.76	42.94	79.84	483.29
75.72	1.15	77.80	46.24	79.88	502.07
75.76	1.16	77.84	49.62	79.92	520.94
75.80	1.18	77.88	53.09	79.96	539.89
75.84	1.19	77.92	56.64	80.00	559.07
75.88	1.21	77.96	57.70		
75.92 75.96	1.22 1.24	78.00 78.04	58.09 58.47		
75.96 76.00	1.24	78.04 78.08	56.47 58.86		
76.04	1.26	78.12	59.24		

Storage

389,702

398,567

407,469

416,407

425,382

434,393

443,441

452,525

461,645

(cubic-feet)

Printed 7/18/2020

Page 100

Stage-Area-Storage for Pond 11P: BASIN 3

Surface

(sq-ft)

88,472

88,836

89,201

89,565

89,929

90,293

90,657

91,022

91,386

		•	J
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)
74.00 74.10 74.20 74.30 74.40 74.50 74.60 74.70 74.80 74.90 75.00 75.10 75.20 75.30 75.40 75.50 75.60 75.70 75.80 76.00 76.10 76.20 76.30 76.40 76.50 76.60 76.70 76.80 76.70 77.30 77.40 77.70 77.30 77.70 77.80 77.70 77.80 77.70 77.80 77.90 78.10 78.20 78.30 78.40 78.50 78.70 79.90 78.10 79.10 79.10	59,381 59,605 59,828 60,052 60,276 60,500 60,723 60,947 61,171 61,394 61,618 61,844 62,069 62,295 62,746 65,362 67,977 70,593 73,208 75,824 76,238 76,652 77,066 77,479 77,893 78,721 79,135 79,549 79,963 80,376 80,379	0 5,949 11,921 17,915 23,931 29,970 36,031 42,115 48,221 54,349 60,500 66,673 72,868 79,086 85,327 91,591 118,781 126,233 133,836 141,481 149,166 156,894 164,662 172,472 180,324 180,324 180,324 180,324 180,324 180,324 180,425 228,301 236,442 244,625 252,849 261,114 269,421 277,769 286,158 294,586 303,051 311,552 320,090 328,664 337,274 345,921 354,604 363,324 372,080 380,873	79.20 79.30 79.40 79.50 79.60 79.70 79.80 79.90 80.00

Prepared by {enter your company name here}

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

<u>Page 101</u>

Summary for Pond 12P: BASIN 4

Inflow Area = 102.290 ac, 1.11% Impervious, Inflow Depth = 3.60" for 100-YR NOAA event

Inflow = 399.01 cfs @ 12.13 hrs, Volume= 30.651 af

Outflow = 184.84 cfs @ 12.37 hrs, Volume= 30.645 af, Atten= 54%, Lag= 14.5 min

Primary = 184.84 cfs @ 12.37 hrs, Volume= 30.645 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 88.13' @ 12.37 hrs Surf.Area= 52,243 sf Storage= 371,527 cf

Plug-Flow detention time= 215.0 min calculated for 30.644 af (100% of inflow)

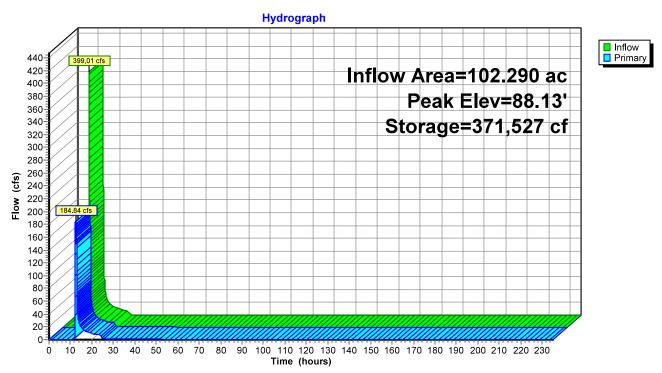
Center-of-Mass det. time= 215.4 min (1,070.6 - 855.2)

Volume	Inv	vert Avail.	Storage	Storage	Description	
#1	78.	50' 420	0,819 cf	Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
78.5	50	23,525	,	Ó	Ŏ	
79.5	50	24,819	2	24,172	24,172	
80.0	00	30,634	1	13,863	38,035	
82.0	00	35,056	6	35,690	103,725	
84.0	00	41,314	7	76,370	180,095	
86.0	00	46,221		37,535	267,630	
88.0	00	50,842		97,063	364,693	
89.0	00	61,410	5	56,126	420,819	
Device	Routing	Inve	ert Outl	et Device	es	
#1	Primary	76.8			0' long Culvert = 76 00' S= 0 00	RCP, sq.cut end projecting, Ke= 0.500

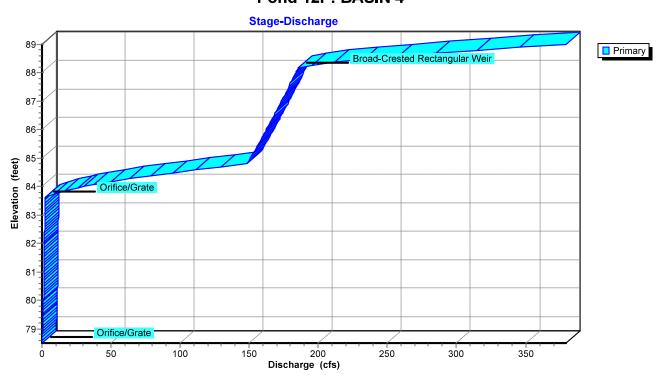
Device	Nouting	IIIVEIL	Oddiet Devices
#1	Primary	76.80'	48.0" x 161.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 76.00' S= 0.0050 '/' Cc= 0.900
			n= 0.011 Concrete pipe, straight & clean
#2	Device 1	78.50'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	83.60'	7.00' x 10.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600
#4	Primary	88.15'	90.0' long x 25.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=184.84 cfs @ 12.37 hrs HW=88.13' TW=0.00' (Dynamic Tailwater)

1=Culvert (Inlet Controls 184.84 cfs @ 14.71 fps)


2=Orifice/Grate (Passes < 2.90 cfs potential flow)

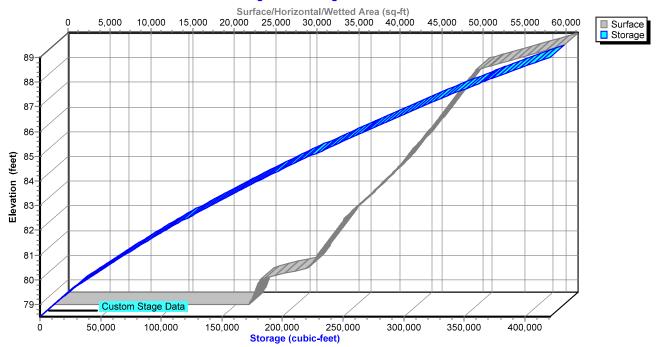
-3=Orifice/Grate (Passes < 717.52 cfs potential flow)


-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 102

Pond 12P: BASIN 4

Pond 12P: BASIN 4


Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 103

Pond 12P: BASIN 4

Stage-Area-Storage

Page 104

Stage-Discharge for Pond 12P: BASIN 4

(feet) (cfs) (feet) (cfs) (feet) (cfs) 78.50 0.01 81.62 1.60 84.74 137.64 87.86 87.92 182.12 78.62 0.04 81.74 1.63 84.80 148.21 87.92 182.73 78.68 0.09 81.80 1.65 84.92 149.69 88.04 183.33 78.60 0.16 81.86 1.67 84.98 150.42 88.10 184.53 78.80 0.23 81.92 1.68 85.04 151.15 88.16 185.36 78.86 0.31 81.98 1.70 85.10 151.87 88.22 190.17 78.98 0.46 82.10 1.73 85.22 153.31 88.34 206.86 79.10 0.56 82.22 1.76 85.34 154.74 88.46 229.86 79.10 0.56 82.24 1.78 85.46 156.15 88.58 257.74 79.22	Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
78.56 0.01 81.68 1.62 84.80 148.21 87.92 182.73 78.68 0.09 81.80 1.65 84.92 149.69 88.04 183.33 78.74 0.16 81.80 1.65 84.92 149.69 88.04 183.92 78.86 0.23 81.92 1.68 85.04 151.15 88.16 185.36 78.86 0.31 81.98 1.70 85.10 151.87 88.22 190.17 78.92 0.39 82.04 1.71 85.16 152.59 88.28 190.17 78.98 0.46 82.10 1.73 85.22 153.31 88.34 206.86 79.10 0.56 82.22 1.76 85.34 154.74 88.46 229.86 79.10 0.56 82.22 1.76 85.34 154.74 88.46 229.86 79.10 0.65 82.34 1.79 85.46 156.85 88.64 229.86	(feet)		(feet)		(feet)		(feet)	
78.62 0.04 81.74 1.65 84.92 149.69 88.04 183.32 78.68 0.09 81.80 1.65 84.92 149.69 88.04 183.32 78.74 0.16 81.86 1.67 84.98 150.42 88.10 184.52 78.80 0.23 81.92 1.68 85.04 151.15 88.22 190.17 78.92 0.39 82.04 1.71 85.16 152.59 88.22 197.60 78.98 0.46 82.10 1.73 85.22 155.31 88.46 217.60 79.10 0.56 82.22 1.76 85.34 154.74 88.46 227.68 79.16 0.61 82.28 1.78 85.40 155.44 88.52 223.27 79.22 0.65 82.34 1.79 85.46 156.25 88.64 273.15 79.46 0.76 82.52 1.84 85.64 156.25 88.76 306.60	78.50	0.00	81.62	1.60	84.74	137.64	87.86	182.12
78.68 0.09 81.80 1.65 84.92 149.69 88.04 183.92 78.74 0.16 81.86 1.67 84.98 150.42 88.10 183.92 78.86 0.31 81.98 1.70 85.10 151.15 88.16 185.36 78.92 0.39 82.04 1.71 85.16 152.59 88.28 190.17 78.98 0.46 82.10 1.73 85.22 153.31 88.34 206.86 79.10 0.56 82.21 1.75 85.28 154.03 88.40 217.68 79.16 0.61 82.28 1.76 85.34 154.74 88.46 229.86 79.16 0.61 82.28 1.79 85.46 155.44 88.52 243.77 79.28 0.69 82.40 1.81 85.52 155.44 88.52 243.77 79.28 0.69 82.46 1.82 85.58 157.55 88.70 289.57	78.56	0.01		1.62	84.80	148.21	87.92	182.73
78.74 0.16 81.86 1.67 84.98 150.42 88.10 184.52 78.80 0.23 81.92 1.68 85.04 151.15 88.16 185.36 78.86 0.31 81.98 1.70 85.10 151.87 88.22 190.17 78.98 0.46 82.10 1.73 85.22 155.31 88.34 20.88 79.04 0.51 82.16 1.75 85.28 154.03 88.40 217.68 79.10 0.56 82.22 1.76 85.34 154.74 88.46 227.68 79.16 0.61 82.28 1.78 85.46 155.44 88.52 243.27 79.22 0.65 82.34 1.79 85.46 156.15 88.58 257.74 79.28 0.69 82.40 1.81 85.52 156.85 88.64 273.15 79.34 0.73 82.52 1.84 85.64 156.25 88.76 306.60	78.62	0.04	81.74	1.63	84.86	148.95		183.33
78.80 0.23 81.92 1.70 85.10 151.15 88.16 185.36 78.86 0.31 81.98 1.70 85.10 151.87 88.22 190.17 78.98 0.46 82.10 1.73 85.22 153.31 88.34 206.86 79.04 0.51 82.16 1.75 85.28 154.03 88.40 217.60 79.10 0.56 82.22 1.78 85.40 154.74 88.46 229.86 79.16 0.61 82.28 1.78 85.40 155.44 88.52 243.27 79.22 0.65 82.34 1.79 85.46 156.15 88.58 257.74 79.28 0.69 82.46 1.82 85.58 157.55 88.70 289.50 79.40 0.76 82.52 1.84 85.64 159.63 88.82 236.70 79.52 0.83 82.64 1.86 85.76 159.63 88.88 231.03	78.68	0.09	81.80	1.65	84.92	149.69	88.04	183.92
78.86 0.31 81.98 1.70 85.10 151.87 88.22 190.17 78.98 0.46 82.10 1.73 85.22 153.31 88.34 206.86 79.04 0.51 82.16 1.75 85.28 154.03 88.40 217.68 79.10 0.56 82.22 1.76 85.34 154.74 88.46 229.86 79.16 0.61 82.28 1.78 85.40 155.44 88.52 243.27 79.22 0.65 82.34 1.79 85.46 156.15 88.58 257.74 79.28 0.69 82.40 1.81 85.52 156.85 88.64 273.15 79.34 0.76 82.52 1.84 85.64 158.25 88.76 306.60 79.46 0.80 82.58 1.85 85.70 158.94 88.82 323.46 79.52 0.83 82.64 158.54 161.68 85.76 159.63 88.76 308.84 <td>78.74</td> <td>0.16</td> <td>81.86</td> <td>1.67</td> <td>84.98</td> <td>150.42</td> <td>88.10</td> <td></td>	78.74	0.16	81.86	1.67	84.98	150.42	88.10	
78.92 0.39 82.04 1.71 85.16 152.59 88.28 197.60 78.98 0.46 82.10 1.73 85.22 153.31 88.34 206.86 79.04 0.51 82.16 1.75 85.28 154.03 88.40 217.68 79.16 0.61 82.28 1.78 85.40 155.44 88.46 229.86 79.16 0.61 82.28 1.78 85.40 155.44 88.62 2243.27 79.22 0.65 82.34 1.79 85.46 156.15 88.52 243.27 79.28 0.69 82.40 1.81 85.52 156.85 88.62 227.74 79.28 0.69 82.52 1.84 85.64 158.25 88.70 289.50 79.40 0.73 82.46 1.82 85.58 157.05 88.72 289.50 79.52 0.83 82.64 1.86 85.76 159.63 88.82 232.376	78.80		81.92		85.04	151.15	88.16	185.36
78.98 0.46 82.10 1.73 85.22 153.31 88.34 206.86 79.04 0.51 82.16 1.75 85.28 154.03 88.40 217.68 79.10 0.56 82.22 1.76 85.34 154.74 88.46 229.86 79.16 0.61 82.28 1.78 85.40 155.44 88.52 243.27 79.28 0.69 82.40 1.81 85.52 156.65 88.64 2273.15 79.34 0.73 82.46 1.82 85.58 157.55 88.70 289.70 79.40 0.76 82.52 1.84 85.64 158.25 88.76 306.60 79.46 0.80 82.58 1.85 85.70 158.94 88.22 323.76 79.58 0.86 82.70 1.88 85.82 160.31 88.84 341.48 79.64 0.89 82.82 1.91 85.94 161.88 79.26 79.76					85.10	151.87		190.17
79.04 0.51 82.16 1.75 85.28 154.03 88.40 217.68 79.16 0.61 82.28 1.78 85.44 155.44 88.52 243.27 79.22 0.69 82.40 1.81 85.52 156.85 88.58 257.74 79.28 0.69 82.40 1.81 85.52 156.85 88.64 273.15 79.34 0.73 82.46 1.82 85.58 157.55 88.70 289.50 79.46 0.80 82.52 1.84 85.64 158.25 88.76 306.60 79.52 0.83 82.64 1.86 85.76 158.94 88.82 323.76 79.52 0.83 82.76 1.88 85.62 160.31 88.84 359.70 79.64 0.89 82.76 1.89 85.88 161.00 89.40 379.26 79.70 0.92 82.82 1.91 85.94 161.68 89.00 379.26								197.60
79.10 0.56 82.22 1.76 85.34 154.74 88.46 229.86 79.16 0.61 82.28 1.78 85.40 155.44 88.52 243.27 79.22 0.65 82.34 1.79 85.46 156.15 88.58 257.74 79.28 0.69 82.40 1.81 85.52 156.85 88.64 273.15 79.40 0.76 82.52 1.84 85.64 158.25 88.70 289.50 79.40 0.76 82.52 1.84 85.64 158.25 88.76 306.60 79.40 0.80 82.58 1.85 85.70 158.94 88.82 232.76 79.52 0.83 82.64 1.86 85.76 159.64 88.82 323.76 79.58 0.86 82.70 1.88 85.82 160.31 88.94 359.70 79.60 0.95 82.88 1.92 86.00 162.36 79.82 0.98 82.94	78.98					153.31		206.86
79.16 0.61 82.28 1.78 85.40 155.44 88.52 243.27 79.28 0.69 82.40 1.81 85.52 156.85 88.58 257.74 79.34 0.76 82.52 1.84 85.54 157.55 88.70 289.50 79.46 0.80 82.58 1.85 85.70 158.94 88.82 323.76 79.52 0.83 82.64 1.86 85.70 158.94 88.82 323.76 79.52 0.83 82.64 1.86 85.70 158.94 88.82 323.76 79.52 0.86 82.70 1.88 85.82 160.31 88.94 359.70 79.64 0.89 82.82 1.91 85.94 161.68 79.76 0.95 82.88 1.92 86.00 162.36 89.00 379.26 79.82 0.98 82.94 1.94 86.06 163.03 89.00 162.36 165.70 80.12 11.11 83.24 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
79.22 0.65 82.34 1.79 85.46 156.15 88.58 257.74 79.28 0.69 82.40 1.81 85.52 156.85 88.64 273.15 79.34 0.73 82.46 1.82 85.58 157.55 88.70 289.50 79.46 0.80 82.58 1.85 85.76 158.94 88.82 323.76 79.52 0.83 82.64 1.86 85.76 159.63 88.88 323.76 79.52 0.83 82.64 1.86 85.76 159.63 88.82 323.76 79.55 0.86 82.70 1.88 85.82 160.31 88.94 359.70 79.64 0.89 82.76 1.89 85.88 161.03 89.00 379.26 79.70 0.92 82.82 1.91 85.94 161.68 79.76 0.95 82.88 1.92 86.00 162.36 79.82 0.98 82.94 1.94 86.02 163.70				1.76			88.46	229.86
79.28 0.69 82.40 1.81 85.52 156.85 88.64 273.15 79.34 0.73 82.46 1.82 85.58 157.55 88.70 289.50 79.40 0.76 82.52 1.84 85.64 158.25 88.76 306.60 79.46 0.80 82.58 1.85 85.70 158.94 88.82 323.76 79.52 0.83 82.64 1.86 85.76 159.63 88.88 341.48 79.58 0.86 82.70 1.88 85.82 160.31 88.94 359.70 79.64 0.89 82.76 1.89 85.88 161.00 89.00 379.26 79.70 0.92 82.82 1.91 86.06 162.36 79.82 0.98 82.94 1.94 86.06 163.03 79.82 0.98 82.94 1.94 86.06 163.03 80.12 1.11 83.24 2.00 86.31 163.70 80.12 163.70 80.18 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
79.34 0.73 82.46 1.82 85.58 157.55 88.76 306.60 79.46 0.80 82.52 1.84 85.64 158.25 88.76 306.60 79.52 0.83 82.64 1.86 85.76 159.63 88.88 323.76 79.58 0.86 82.70 1.88 85.82 160.31 88.94 359.70 79.64 0.89 82.76 1.89 85.88 161.00 89.00 379.26 79.70 0.92 82.82 1.91 85.94 161.68 89.00 379.26 79.76 0.95 82.88 1.92 86.00 163.03 79.88 1.00 83.00 1.95 86.12 163.03 79.94 1.03 83.06 1.96 86.12 163.70 80.00 1.06 83.12 1.98 86.24 165.04 80.06 163.03 80.24 1.11 83.24 2.00 86.36 166.37 80.12 1.11 83.34 2.00<								
79.40 0.76 82.52 1.84 85.64 158.25 88.76 306.60 79.46 0.80 82.58 1.85 85.70 158.94 88.88 341.48 79.52 0.83 82.64 1.86 85.76 159.63 88.88 341.48 79.58 0.86 82.70 1.88 85.82 160.31 88.94 359.70 79.64 0.89 82.76 1.89 85.88 161.00 89.00 379.26 79.70 0.92 82.82 1.91 86.94 161.68 79.76 0.95 82.88 1.92 86.00 162.36 79.82 0.98 82.94 1.94 86.06 163.03 79.88 1.00 83.00 1.95 86.12 163.70 79.94 1.03 83.06 1.96 86.18 164.37 80.00 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.12 167.03 80								
79.46 0.80 82.58 1.85 85.70 158.94 88.82 323.76 79.52 0.83 82.64 1.86 85.76 159.63 88.88 341.48 79.58 0.86 82.76 1.89 85.88 161.00 89.90 379.26 79.70 0.92 82.82 1.91 85.94 161.68 89.00 379.26 79.76 0.95 82.88 1.92 86.00 162.36 89.00 379.26 79.82 0.98 82.94 1.94 86.06 163.03 79.88 1.00 83.00 1.95 86.12 163.70 86.12 163.70 86.12 163.70 86.00 162.36 86.18 164.37 86.00 162.36 86.18 164.37 86.00 162.36 86.18 163.70 86.12 165.04 86.612 165.04 86.00 162.36 86.24 165.04 86.30 165.70 86.18 164.37 86.84 167.03 86.42 167.0								
79.52 0.83 82.64 1.86 85.76 159.63 88.88 341.48 79.58 0.86 82.70 1.88 85.82 160.31 88.94 359.70 79.70 0.92 82.82 1.91 85.94 161.68 89.00 379.26 79.70 0.92 82.82 1.91 85.94 161.68 89.00 379.26 79.70 0.92 82.88 1.92 86.00 162.36 89.00 379.26 79.70 0.95 82.88 1.92 86.00 162.36 89.00 379.26 79.82 0.98 82.94 1.94 86.00 162.36 79.82 1.00 83.00 1.95 86.12 163.70 79.94 1.03 83.06 1.96 86.12 163.70 86.12 163.70 80.12 1.11 83.24 2.00 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.24 167.03 80.48 167								
79.58 0.86 82.70 1.88 85.82 160.31 88.94 359.70 79.70 0.92 82.82 1.91 85.94 161.68 89.00 379.26 79.76 0.95 82.88 1.92 86.00 162.36 79.82 0.98 82.94 1.94 86.06 163.03 79.88 1.00 83.00 1.95 86.12 163.70 79.94 1.03 83.06 1.96 86.18 164.37 80.00 1.06 83.12 1.98 86.24 165.04 80.06 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.42 167.03 80.24 1.15 83.36 2.03 86.44 168.34 80.36 166.37 80.34 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36								
79.64 0.89 82.76 1.89 85.88 161.00 89.00 379.26 79.76 0.95 82.88 1.92 86.00 162.36 79.82 0.98 82.94 1.94 86.00 162.36 79.82 0.98 82.94 1.94 86.06 163.03 79.88 1.00 83.00 1.95 86.12 163.70 79.94 1.03 83.06 1.96 86.18 164.37 80.00 1.06 83.12 1.98 86.24 165.04 80.06 163.03 80.06 163.70 80.06 10.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.12 1.11 83.36 2.03 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 165.70 80.60 168.39 80.30 168.99 80.42 120 83.48 2.06 86.60 168.99 80.42 120 83.48 2.06								
79.70 0.92 82.82 1.91 85.94 161.68 79.76 0.95 82.88 1.92 86.00 162.36 79.82 0.98 82.94 1.94 86.06 163.03 79.88 1.00 83.00 1.95 86.12 163.70 79.94 1.03 83.06 1.96 86.18 164.37 80.00 1.06 83.12 1.98 86.24 165.04 80.06 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.66 169.63 80.42 1.22 83.54 2.07 86.66 169.63			82.70					
79.76 0.95 82.88 1.92 86.00 162.36 79.82 0.98 82.94 1.94 86.06 163.03 79.88 1.00 83.00 1.95 86.12 163.70 79.94 1.03 83.06 1.96 86.18 164.37 80.00 1.06 83.12 1.98 86.24 165.04 80.06 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.54 1.26 83.66 3.73 86.72 170.28							89.00	379.26
79.82 0.98 82.94 1.94 86.06 163.03 79.84 1.00 83.00 1.95 86.12 163.70 79.94 1.03 83.06 1.96 86.18 164.37 80.00 1.06 83.12 1.98 86.24 165.04 80.06 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.60 1.29 83.72 6.73 86.84 171.57								
79.88 1.00 83.00 1.95 86.12 163.70 79.94 1.03 83.06 1.96 86.18 164.37 80.00 1.06 83.12 1.98 86.24 165.04 80.06 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.54 1.26 83.66 3.73 86.72 170.28 80.54 1.26 83.66 3.73 86.84 171.57 80.66 1.31 83.72 6.73 86.84 172.21								
79.94 1.03 83.06 1.96 86.18 164.37 80.00 1.06 83.12 1.98 86.24 165.04 80.06 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.78 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.96 172.84								
80.00 1.06 83.12 1.98 86.24 165.04 80.06 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.84 171.57 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48								
80.06 1.08 83.18 1.99 86.30 165.70 80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.42 1.22 83.54 2.07 86.66 169.63 80.42 1.22 83.66 3.73 86.72 170.28 80.54 1.26 83.66 3.73 86.84 171.57 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84								
80.12 1.11 83.24 2.00 86.36 166.37 80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.78 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.72 1.33 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74								
80.18 1.13 83.30 2.02 86.42 167.03 80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.84 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.99								
80.24 1.15 83.36 2.03 86.48 167.68 80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.78 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99								
80.30 1.18 83.42 2.04 86.54 168.34 80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.78 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61								
80.36 1.20 83.48 2.06 86.60 168.99 80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.78 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23								
80.42 1.22 83.54 2.07 86.66 169.63 80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.78 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85			83.42					
80.48 1.24 83.60 2.08 86.72 170.28 80.54 1.26 83.66 3.73 86.78 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.34 1.53 84.50 97.19 87.62 179		1.20						
80.54 1.26 83.66 3.73 86.78 170.92 80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
80.60 1.29 83.72 6.73 86.84 171.57 80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 <								
80.66 1.31 83.78 10.61 86.90 172.21 80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31								
80.72 1.33 83.84 15.21 86.96 172.84 80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
80.78 1.35 83.90 20.41 87.02 173.48 80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
80.84 1.37 83.96 26.17 87.08 174.11 80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
80.90 1.39 84.02 32.43 87.14 174.74 80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
80.96 1.41 84.08 39.16 87.20 175.37 81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.02 1.42 84.14 46.31 87.26 175.99 81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.08 1.44 84.20 53.88 87.32 176.61 81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.14 1.46 84.26 61.83 87.38 177.23 81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.20 1.48 84.32 70.16 87.44 177.85 81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.26 1.50 84.38 78.83 87.50 178.47 81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.32 1.52 84.44 87.85 87.56 179.08 81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.38 1.53 84.50 97.19 87.62 179.70 81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.44 1.55 84.56 106.86 87.68 180.31 81.50 1.57 84.62 116.82 87.74 180.91								
81.50 1.57 84.62 116.82 87.74 180.91								

Page 105

Stage-Area-Storage for Pond 12P: BASIN 4

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
78.50	23,525	0	86.30	46,914	281,601
78.65	23,719	3,543	86.45	47,261	288,664
78.80	23,913	7,116	86.60	47,607	295,779
78.95	24,107	10,717	86.75	47,954	302,946
79.10	24,301	14,348	86.90	48,300	310,165
79.25	24,496	18,008	87.05	48,647	317,436
79.40	24,690	21,697	87.20	48,994	324,759
79.55	25,400	25,427	87.35	49,340	332,134
79.70	27,145	29,368	87.50	49,687	339,561
79.85	28,889	33,571	87.65	50,033	347,040
80.00	30,634	38,035	87.80	50,380	354,571
80.15	30,966 34,307	42,655 47,335	87.95	50,726	362,154
80.30	31,297	47,325 52,044	88.10	51,899 53,484	369,830
80.45	31,629	52,044	88.25	53,484	377,734
80.60 80.75	31,961	56,814 61 633	88.40 88.55	55,069 56,654	385,875 304,355
80.75 80.00	32,292 32,624	61,633 66,501			394,255 402,872
80.90 81.05		66,501	88.70 88.85	58,240	402,872 411,727
81.05 81.20	32,956 33,287	71,420 76,388	89.00	59,825 61,410	420,819
81.35	33,619	81,406	09.00	01,410	420,019
81.50	33,951	86,474			
81.65	34,282	91,591			
81.80	34,614	96,758			
81.95	34,945	101,975			
82.10	35,369	107,246			
82.25	35,838	112,587			
82.40	36,308	117,998			
82.55	36,777	123,479			
82.70	37,246	129,031			
82.85	37,716	134,653			
83.00	38,185	140,346			
83.15	38,654	146,109			
83.30	39,124	151,942			
83.45	39,593	157,846			
83.60	40,062	163,820			
83.75	40,532	169,865			
83.90	41,001	175,979			
84.05	41,437	182,164			
84.20	41,805	188,407			
84.35	42,173	194,705			
84.50	42,541	201,059			
84.65	42,909	207,468			
84.80	43,277	213,932			
84.95	43,645	220,451			
85.10 85.25	44,013 44,381	227,025 222,655			
85.25 85.40	44,381	233,655			
85.40 85.55	44,749 45,117	240,339 247,079			
85.55 85.70	45,117 45,485	247,079 253,874			
85.85	45,465 45,853	260,725			
86.00	46,221	260,725 267,630			
86.15	46,568	274,589			
50.15	70,000	214,000			

Prepared by {enter your company name here}

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 106

Summary for Pond 16P: WQv FACILITY

Inflow Area = 3.461 ac, 8.78% Impervious, Inflow Depth = 5.38" for 100-YR NOAA event

Inflow = 32.48 cfs @ 11.97 hrs, Volume= 1.550 af

Outflow = 26.48 cfs @ 12.02 hrs, Volume= 1.550 af, Atten= 18%, Lag= 2.9 min

Primary = 26.48 cfs @ 12.02 hrs, Volume= 1.550 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Peak Elev= 91.10' @ 12.02 hrs Surf.Area= 4,796 sf Storage= 12,385 cf

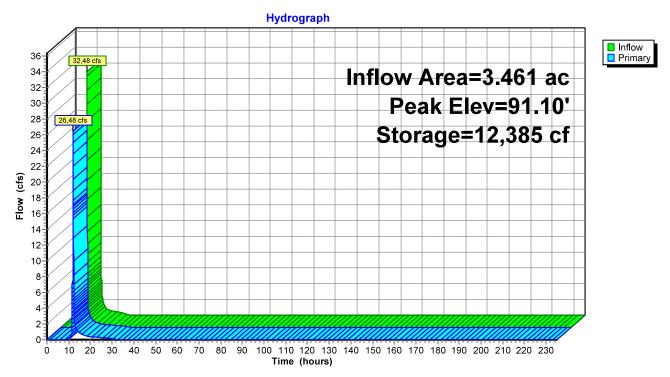
Plug-Flow detention time= 89.7 min calculated for 1.550 af (100% of inflow)

Center-of-Mass det. time= 90.1 min (900.9 - 810.7)

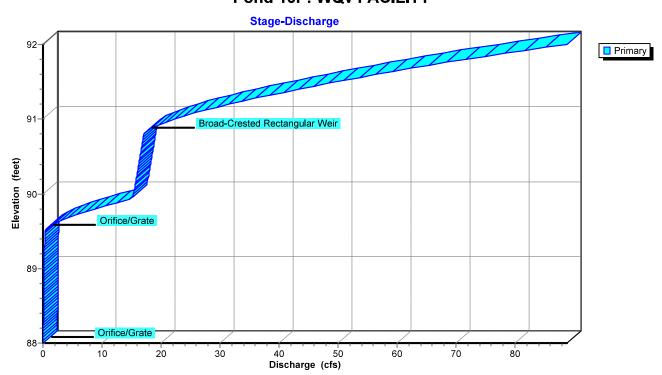
Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	88.0	00' 16,93	30 cf Custor	m Stage Data (Prismatic) Listed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
88.0	00	3,242	0	0	
89.5	50	3,958	5,400	5,400	
90.0	00	4,210	2,042	7,442	
92.0	00	5,278	9,488	16,930	
Device	Routing	Invert	Outlet Devic	ces	
#1	Primary	86.00'	Outlet Invert	0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 t= 82.00' S= 0.0909 '/' Cc= 0.900 oncrete pipe, straight & clean	_
#2	Device 1	88.00'		oricrete pipe, straight & clean prifice/Grate C= 0.600	
#3	Device 1			' Horiz. Orifice/Grate Limited to weir flow C= 0.600	
#4	Primary	90.80'	20.0' long x Head (feet)	x 20.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 (sh) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63	

Primary OutFlow Max=26.46 cfs @ 12.02 hrs HW=91.10' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 17.74 cfs @ 10.04 fps)


2=Orifice/Grate (Passes < 0.41 cfs potential flow)

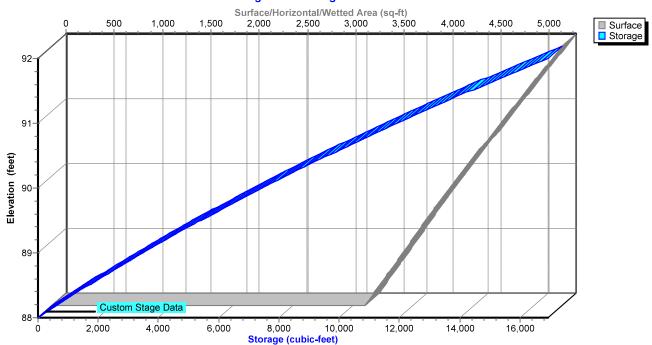
3=Orifice/Grate (Passes < 97.36 cfs potential flow)


-4=Broad-Crested Rectangular Weir (Weir Controls 8.72 cfs @ 1.47 fps)

Page 107

Pond 16P: WQv FACILITY

Pond 16P: WQv FACILITY


Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 108

Pond 16P: WQv FACILITY

Stage-Area-Storage

Page 109

Stage-Discharge for Pond 16P: WQv FACILITY

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
88.00	0.00	89.04	0.23	90.08	15.53	91.12	27.53
88.02	0.00	89.06	0.23	90.10	15.57	91.12	28.51
88.04	0.00	89.08	0.23	90.12	15.62	91.16	29.52
88.06	0.01	89.10	0.23	90.14	15.67	91.18	30.55
88.08	0.01	89.12	0.24	90.16	15.71	91.20	31.61
88.10	0.01	89.14	0.24	90.18	15.76	91.22	32.69
88.12	0.02	89.16	0.24	90.20	15.80	91.24	33.79
88.14	0.04	89.18	0.24	90.22	15.85	91.26	34.92
88.16	0.05	89.20	0.25	90.24	15.90	91.28	36.07
88.18	0.05	89.22	0.25	90.26	15.94	91.30	37.24
88.20	0.06	89.24	0.25	90.28	15.99	91.32	38.44
88.22	0.07	89.26	0.25	90.30	16.03	91.34	39.66
88.24	0.08	89.28	0.25	90.32	16.08	91.36	40.90
88.26	0.09	89.30	0.26	90.34	16.12	91.38	42.16
88.28	0.09	89.32	0.26	90.36	16.17	91.40	43.45
88.30	0.10	89.34	0.26	90.38	16.21	91.42	44.69
88.32	0.10	89.36	0.26	90.40	16.26	91.44	45.95
88.34	0.11	89.38	0.26	90.42	16.30	91.46	47.23
88.36	0.11	89.40	0.27	90.44	16.34	91.48	48.52
88.38	0.12	89.42	0.27	90.46	16.39	91.50	49.82
88.40	0.12	89.44	0.27	90.48	16.43	91.52	51.13
88.42	0.13	89.46	0.27	90.50	16.48	91.54	52.46
88.44	0.13 0.14	89.48 89.50	0.28 0.28	90.52 90.54	16.52 16.56	91.56 91.58	53.80 55.16
88.46 88.48	0.14	89.52	0.28	90.54	16.56	91.60	56.52
88.50	0.14	89.52 89.54	0.43	90.58	16.65	91.62	57.97
88.52	0.14	89.56	1.05	90.60	16.70	91.64	59.43
88.54	0.15	89.58	1.47	90.62	16.74	91.66	60.92
88.56	0.16	89.60	1 94	90.64	16.78	91.68	62.41
88.58	0.16	89.62	2.46	90.66	16.82	91.70	63.93
88.60	0.16	89.64	3.03	90.68	16.87	91.72	65.46
88.62	0.17	89.66	3.64	90.70	16.91	91.74	67.00
88.64	0.17	89.68	4.29	90.72	16.95	91.76	68.56
88.66	0.17	89.70	4.98	90.74	17.00	91.78	70.13
88.68	0.18	89.72	5.70	90.76	17.04	91.80	71.72
88.70	0.18	89.74	6.45	90.78	17.08	91.82	73.37
88.72	0.18	89.76	7.24	90.80	17.12	91.84	75.03
88.74	0.19	89.78	8.06	90.82	17.32	91.86	76.70
88.76	0.19 0.19	89.80 89.82	8.90 9.78	90.84	17.64	91.88	78.40
88.78 88.80	0.19	89.84	10.68	90.86 90.88	18.04 18.50	91.90 91.92	80.11 81.84
88.82	0.19	89.86	11.61	90.90	19.03	91.94	83.58
88.84	0.20	89.88	12.57	90.92	19.60	91.96	85.34
88.86	0.20	89.90	13.55	90.94	20.22	91.98	87.11
88.88	0.21	89.92	14.56	90.96	20.89	92.00	88.90
88.90	0.21	89.94	15.20	90.98	21.59		
88.92	0.21	89.96	15.24	91.00	22.34		
88.94	0.21	89.98	15.29	91.02	23.12		
88.96	0.22	90.00	15.34	91.04	23.94		
88.98	0.22	90.02	15.39	91.06	24.79		
89.00	0.22	90.04	15.43	91.08	25.67		
89.02	0.22	90.06	15.48	91.10	26.59		
		l		l			

Page 110

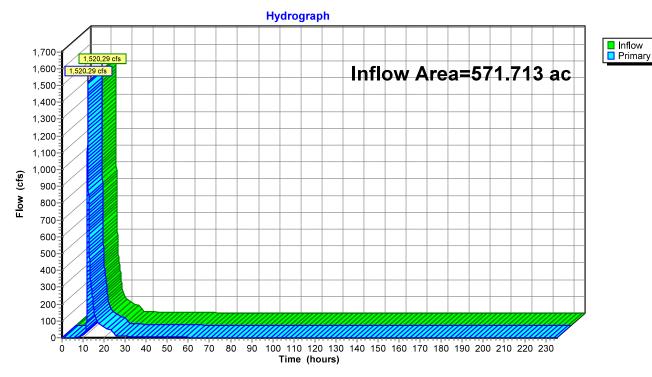
Stage-Area-Storage for Pond 16P: WQv FACILITY

□laatia.a	0	04		0	04
Elevation (fact)	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft) 3,242	(cubic-feet) 0	(feet)	(sq-ft)	(cubic-feet)
88.00 88.05	3,242 3,266	163	90.60 90.65	4,530 4,557	10,064 10,291
88.10	3,290	327	90.70	4,537 4,584	10,520
		492			
88.15 88.20	3,314		90.75	4,611 4,637	10,750
88.20	3,337	658	90.80	4,637	10,981
88.25	3,361	825	90.85	4,664	11,213
88.30	3,385	994	90.90	4,691	11,447
88.35	3,409	1,164	90.95	4,717	11,682
88.40	3,433	1,335	91.00	4,744	11,919
88.45	3,457	1,507	91.05	4,771	12,157
88.50	3,481	1,681	91.10	4,797	12,396
88.55	3,505	1,855	91.15	4,824	12,637
88.60	3,528	2,031	91.20	4,851 4,878	12,878
88.65	3,552	2,208	91.25	4,878	13,122
88.70	3,576	2,386	91.30	4,904	13,366
88.75	3,600	2,566	91.35	4,931	13,612
88.80	3,624	2,746	91.40	4,958	13,859
88.85	3,648	2,928	91.45	4,984	14,108
88.90	3,672	3,111	91.50	5,011	14,358
88.95	3,695	3,295	91.55	5,038 5,034	14,609
89.00	3,719	3,481	91.60	5,064 5,004	14,862
89.05	3,743	3,667	91.65	5,091	15,115
89.10	3,767	3,855	91.70	5,118	15,371
89.15	3,791	4,044	91.75	5,145	15,627
89.20	3,815	4,234	91.80	5,171	15,885
89.25	3,839	4,425	91.85	5,198	16,144
89.30	3,863	4,618	91.90	5,225 5,251	16,405
89.35	3,886	4,812 5,007	91.95	5,251	16,667
89.40	3,910	5,007 5,003	92.00	5,278	16,930
89.45	3,934	5,203 5,400			
89.50	3,958	5,400 5,500			
89.55	3,983	5,599 5,708			
89.60	4,008	5,798 5,000			
89.65 80.70	4,034	5,999 6 303			
89.70 80.75	4,059	6,202			
89.75 89.80	4,084	6,405 6,610			
89.85	4,109 4,134	6,610 6,816			
89.90	4,134 4,160	7,024			
89.95	4,185	7,024 7,232			
90.00	4,783	7,232 7,442			
90.05	4,237	7,442 7,653			
90.10	4,263	7,866			
90.15	4,290	8,080			
90.20	4,317	8,295			
90.25	4,344	8,511			
90.30	4,370	8,729			
90.35	4,370 4,397	8,948			
90.40	4,397 4,424	9,169			
90.45	4,424 4,450	9,109			
90.43	4,430 4,477	9,591 9,614			
90.55	4,504	9,838			
50.55	7,004	3,030			
			ı		

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 111

Summary for Link 14L: TOTAL PROPOSED


Inflow Area = 571.713 ac, 2.47% Impervious, Inflow Depth = 4.75" for 100-YR NOAA event

Inflow = 1,520.29 cfs @ 12.23 hrs, Volume= 226.084 af

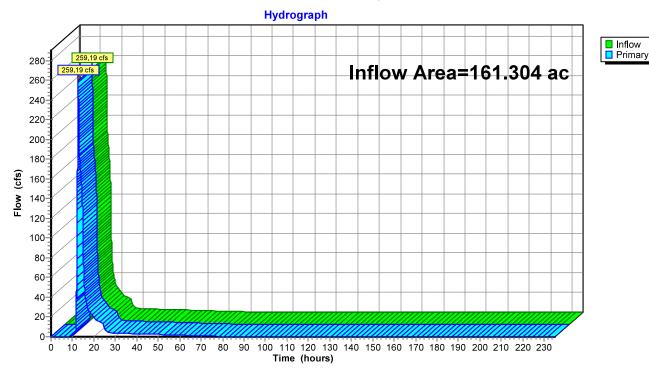
Primary = 1,520.29 cfs @ 12.23 hrs, Volume= 226.084 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 14L: TOTAL PROPOSED

Page 112

Summary for Link 59L: Discharge Pt 1


Inflow Area = 161.304 ac, 3.97% Impervious, Inflow Depth = 5.37" for 100-YR NOAA event

Inflow = 259.19 cfs @ 12.73 hrs, Volume= 72.206 af

Primary = 259.19 cfs @ 12.73 hrs, Volume= 72.206 af, Atten= 0%, Lag= 0.0 min

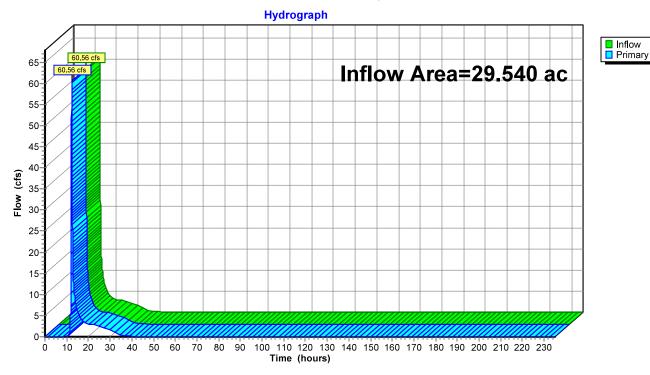
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 59L: Discharge Pt 1

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 113

Summary for Link 60L: Discharge Pt 2


Inflow Area = 29.540 ac, 4.03% Impervious, Inflow Depth = 3.48" for 100-YR NOAA event

Inflow = 60.56 cfs @ 12.28 hrs, Volume= 8.560 af

Primary = 60.56 cfs @ 12.28 hrs, Volume= 8.560 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

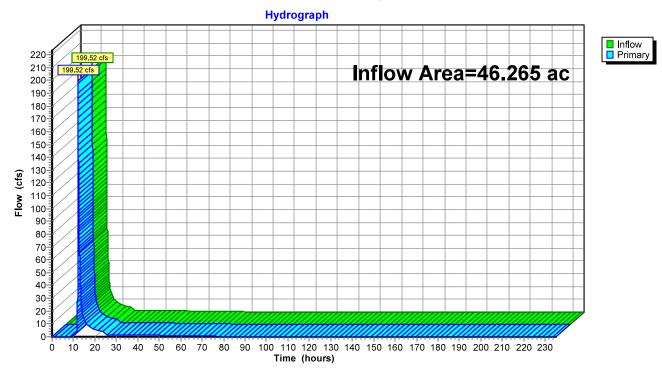
Link 60L: Discharge Pt 2

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 114

Summary for Link 61L: Discharge Pt 3


Inflow Area = 46.265 ac, 6.92% Impervious, Inflow Depth = 6.07" for 100-YR NOAA event

Inflow = 199.52 cfs @ 12.21 hrs, Volume= 23.384 af

Primary = 199.52 cfs @ 12.21 hrs, Volume= 23.384 af, Atten= 0%, Lag= 0.0 min

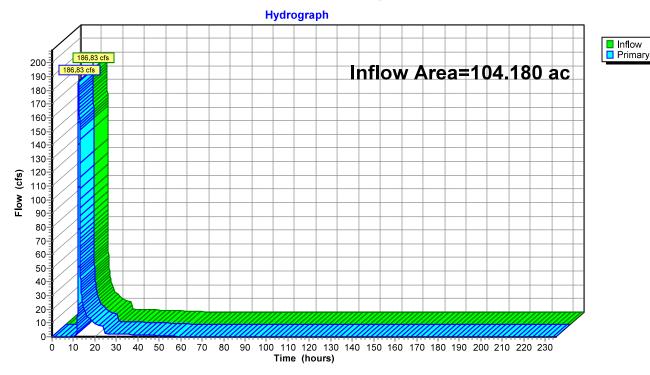
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 61L: Discharge Pt 3

Printed 7/18/2020

Page 115

Summary for Link 62L: Discharge Pt 4


Inflow Area = 104.180 ac, 1.09% Impervious, Inflow Depth = 3.64" for 100-YR NOAA event

Inflow = 186.83 cfs @ 12.37 hrs, Volume= 31.586 af

Primary = 186.83 cfs @ 12.37 hrs, Volume= 31.586 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

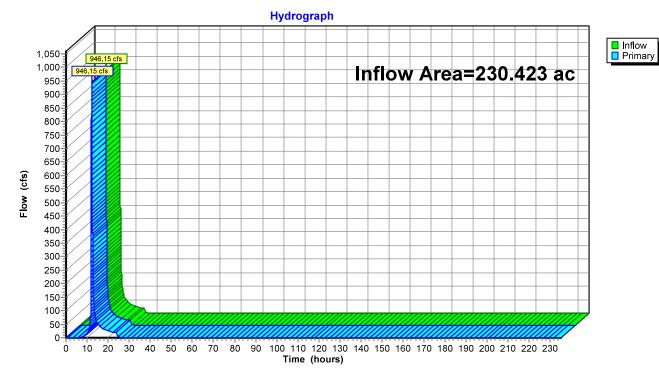
Link 62L: Discharge Pt 4

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 116

Summary for Link 63L: P 5


Inflow Area = 230.423 ac, 0.95% Impervious, Inflow Depth = 4.71" for 100-YR NOAA event

Inflow = 946.15 cfs @ 12.20 hrs, Volume= 90.348 af

Primary = 946.15 cfs @ 12.20 hrs, Volume= 90.348 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 63L: P 5

ATTACHMENT 17D

Proposed Channel Flows

Subject: Stormwater	Management - Propose	d Channel Flows
Job No. 2018-3854	Made by: RP	Date 07-15-20
Ref.	Checked by: VEF	Sheet 1 of 3

Revised by PGS 08/21/2021

Objective: The objective of this analysis is to estimate the flow in the proposed stormwater management channels under the design storms being considered.

Design Approach and Assumptions:

Use HydroCad, a computer software which implements the principles of TR-55 and TR-20 for larger drainage areas. The input data for each is as follows:

- Drainage areas determine the contributing drainage area to the discharge location based upon the topographic data of the area. Use the "area" function in AutoCAD to find the area of the drainage area boundary.
- 2) Based on the soils types and the vegetative cover, determine the areas of multiple soil types and cover conditions in each drainage area. Calculate a "weighed" curve number. HydroCAD actually does this calculation based upon data entry.
- Determine the time of concentration for water to flow from the longest distance (in time) from the outlet. Measure the length and slope of the tc flow path and the surface condition.
- 4) Although the site is location along the eastern seaboard, this is a Type II storm event because the DelMarVa peninsula shields it from the affects of the ocean.
- 5) Determine the peak flows for the 25-year, 24 hour (5.9 inches of rain) and 100 year, 24 hour (8.5 inches of rain) storm events.
- 6) The HydroCad models allows calculating the peak flows without conducting a full-fledged -sledged hydraulic routing.

Calculations:

Attached is a summary table of the input data to the HydroCAD program and the computer printout for evaluation for the design storm events.

References:

- HydroCAD, V8.5.
- Advanced GeoServices Corp, Calculations entitled "Stormwater management Existing Conditions," dated July 15, 2020.

Subject: Stormwater	Management - Propose	d Channel Flows
Job No. 2018-3854	Made by: RP	Date 07-15-20
Ref.	Checked by: VEFIE	Sheet 2 of 3

Revised by PGS 08/21/2021

Conclusions:

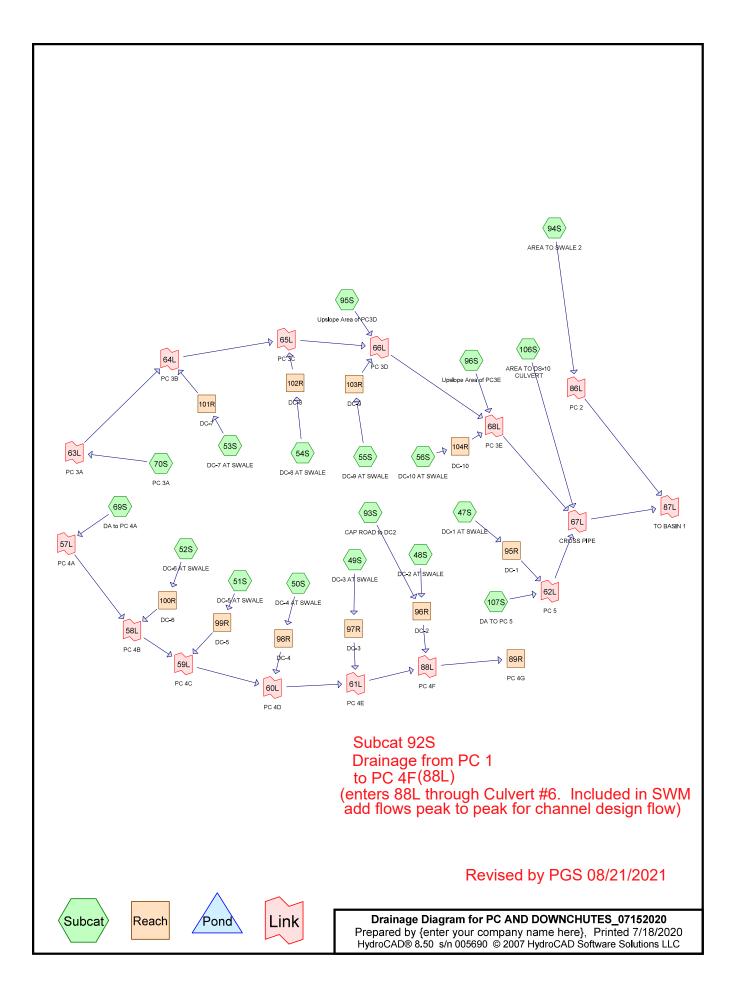
A summary of the inflow and the proposed channel flows are provided in the table below.

Channel ID	25 year, 24 hour storm event Qout (cfs)	100 year, 24 hour storm event Qout (cfs)	
	West Section (Cells 1-10)		
Downchute 1 (DC-1)	60.95	94.79	
Downchute 2 (DC-2)	54.36	85.88	
Downchute 3 (DC-3)	70.96	113.02	
Downchute 4 (DC-4)	49.88	80.10	
Downchute 5 (DC-5)	51.59	82.86	
Downchute 6 (DC-6)	68.55	107.42	
Downchute 7 (DC-7)	65.04	103.58	
Downchute 8 (DC-8)	59.62	100.17	
Downchute 9 (DC-9)	47.30	74.71	
Downchute 10 (DC-10)	58.89	93.03	
Perimeter Channel 2	31.83	57.96	
Perimeter Channel 3A	15.97	24.83	
Perimeter Channel 3B	80.84	128.22	
Perimeter Channel 3C	140.25	228.15	
Perimeter Channel 3D	197.64	319.29	
Perimeter Channel 3E	282.93	455.14	
Perimeter Channel 4A	40.72	63.32	
Perimeter Channel 4B	109.16	170.64	
Perimeter Channel 4C	160.59	253,31	
Perimeter Channel 4D	210.30	333.21	
Perimeter Channel 4E	281.05	445.99	
Perimeter Channel 4F	347.9 1 391.91*	552:08653.38*	
Perimeter Channel 5	81.01	126.24	
	Leachate Storage Facility No. 1		
Perimeter Channel 1	64.62	158.72	
Perimeter Channel 6	24.00	65.73	
Perimeter Channel 7	17.34	26.77	
Perimeter Channel 10	68.46	164.87	

^{*}Proposed channel flows were increased by 44.0 cfs and 101.3 cfs for the 25 year and 100 year storm events to include inflow from Culvert #6. Added peak to peak without routing to be conservative.

Subject: Stormwater	Management – Propose	d Channel Flows
Job No. 2018-3854	Made by: RP	Date 07-15-20
Ref.	Checked by: VEF	Sheet 3 of 3

Revised by PGS 08/21/2021


Channel ID	25 year, 24 hour storm event Qout (cfs)	100 year, 24 hour storm event Qout (cfs)	
	East Section (Cells 11-16)		
Downchute 20 (DC-20)	35.77	57.44	
Downchute 21 (DC-21)	53.31	85.62	
Downchute 22 (DC-22)	29.30	47.05	
Downchute 23 (DC-23)	42.90	68.89	
Perimeter Channel 8A	36.51	57.29	
Perimeter Channel 8B	113.80	180.49	
Perimeter Channel 8C	279.88	444.63	
Perimeter Channel 9A	48.18	76.42	
Perimeter Channel 9B	91.08	145.31	
Perimeter Channel 9C	122.84	195.09	

The 25 year, 24 hour storm event flow rates will be used to determine the size of the channels and select channel lining. These flow rates will also be used to size culverts.

The selected channels will be checked for overtopping under 100 year, 24 hour flow conditions.

West Section (Cells 1-10)

PC AND DOWNCHUTES_07152020
Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 2

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.317	30	Woods, Good, HSG A (94S)
2.613	61	>75% Grass cover, Good, HSG B (ONSITE A) (94S)
0.669	70	Woods, Good, HSG C (94S)
14.090	74	>75% Grass cover, Good, HSG C (54S,95S,96S)
1.448	74	FROM APPROVED CALCS (93S)
1.462	76	RA ZONING C SOILS (94S)
0.732	77	Woods, Good, HSG D (94S)
84.159	80	>75% Grass cover, Good, HSG D (47S,48S,49S,50S,51S,52S,53S,55S,56S,69S,70S,106S,107
6.261	80	>75% Grass cover, Good, HSG D (ONSITE C) (94S)
0.279	80	>75% Grass cover, Good, HSG D (ONSITE D) (94S)
0.539	98	CAP ACCESS (47S)
0.225	98	CAP ROAD (48S)
2.511	98	PERIMETER ROAD (47S,48S,107S)
7.462	98	Paved parking & roofs (49S,50S,51S,52S,53S,54S,55S,56S,69S,70S,95S,96S)
0.472	98	Paved roads w/curbs & sewers (93S)
124.239		TOTAL AREA

PC AND DOWNCHUTES_07152020
Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 3

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Goup	Numbers
1.317	HSG A	94\$
2.613	HSG B	94\$
14.759	HSG C	54S, 94S, 95S, 96S
91.431	HSG D	47S, 48S, 49S, 50S, 51S, 52S, 53S, 55S, 56S, 69S, 70S, 94S, 106S, 107S
14.119	Other	47S, 48S, 49S, 50S, 51S, 52S, 53S, 54S, 55S, 56S, 69S, 70S, 93S, 94S, 95S, 96S, 107S
124.239		TOTAL AREA

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 47S: DC-1 AT SWALE	Runoff Area=8.371 ac 21.28% Impervious Runoff Depth=4.10" Tc=5.0 min CN=84 Runoff=60.95 cfs 2.862 af
Subcatchment 48S: DC-2 AT SWALE	Runoff Area=7.779 ac 11.04% Impervious Runoff Depth=3.90" Tc=5.0 min CN=82 Runoff=54.36 cfs 2.525 af
Subcatchment 49S: DC-3 AT SWALE	Runoff Area=10.378 ac 4.90% Impervious Runoff Depth=3.79" Tc=5.0 min CN=81 Runoff=70.96 cfs 3.280 af
Subcatchment 50S: DC-4 AT SWALE	Runoff Area=325,003 sf 2.45% Impervious Runoff Depth=3.69" Tc=5.0 min CN=80 Runoff=49.88 cfs 2.295 af
Subcatchment 51S: DC-5 AT SWALE	Runoff Area=336,190 sf 2.47% Impervious Runoff Depth=3.69" Tc=5.0 min CN=80 Runoff=51.59 cfs 2.374 af
Subcatchment 52S: DC-6 AT SWALE	Runoff Area=9.605 ac 13.94% Impervious Runoff Depth=4.00" Tc=5.0 min CN=83 Runoff=68.55 cfs 3.201 af
Subcatchment 53S: DC-7 AT SWALE	Runoff Area=414,298 sf 5.16% Impervious Runoff Depth=3.79" Tc=5.0 min CN=81 Runoff=65.04 cfs 3.006 af
Subcatchment 54S: DC-8 AT SWALE	Runoff Area=440,848 sf 5.29% Impervious Runoff Depth=3.20" Tc=5.0 min CN=75 Runoff=59.62 cfs 2.696 af
Subcatchment 55S: DC-9 AT SWALE	Runoff Area=294,805 sf 9.96% Impervious Runoff Depth=3.90" Tc=5.0 min CN=82 Runoff=47.30 cfs 2.197 af
Subcatchment 56S: DC-10 AT SWALE	Runoff Area=8.427 ac 8.39% Impervious Runoff Depth=3.90" Tc=5.0 min CN=82 Runoff=58.89 cfs 2.735 af
Subcatchment 69S: DA to PC 4A	Runoff Area=243,601 sf 21.90% Impervious Runoff Depth=4.10" Tc=5.0 min CN=84 Runoff=40.72 cfs 1.912 af
Subcatchment 70S: PC 3A	Runoff Area=95,531 sf 21.86% Impervious Runoff Depth=4.10" Tc=5.0 min CN=84 Runoff=15.97 cfs 0.750 af
Subcatchment 93S: CAP ROAD to DC2	Runoff Area=83,627 sf 24.59% Impervious Runoff Depth=3.69" Tc=5.0 min CN=80 Runoff=12.83 cfs 0.591 af
Subcatchment 94S: AREA TO SWALE 2 Flo	Runoff Area=580,809 sf 0.00% Impervious Runoff Depth=2.73" w Length=4,507' Tc=29.0 min CN=70 Runoff=31.83 cfs 3.029 af
	D Runoff Area=1.573 ac 21.17% Impervious Runoff Depth=3.59" Slope=0.3300 '/' Tc=5.0 min CN=79 Runoff=10.27 cfs 0.471 af
Subcatchment 96S: Upslope Area of PC3	E Runoff Area=4.062 ac 19.62% Impervious Runoff Depth=3.59"

Flow Length=80' Slope=0.3300 '/' Tc=5.0 min CN=79 Runoff=26.52 cfs 1.215 af

Revised by PGS 08/27/2021

PC AND DOWNCHUTES 07152020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Type II 24-hr 25-YR Rainfall=5.90" Printed 7/18/2020

Page 5

Subcatchment 106S: AREA TO DS-10 Runoff Area=286,585 sf 0.00% Impervious Runoff Depth=3.69"

Tc=5.0 min CN=80 Runoff=43.98 cfs 2.024 af

Subcatchment 107S: DA TO PC 5Runoff Area=124,070 sf 22.29% Impervious Runoff Depth=4.10"

Tc=5.0 min CN=84 Runoff=20.74 cfs 0.974 af

391.91

Reach 89R: PC 4G

Avg. Depth=1.59' Max Vel=11.82 fps Inflow=347.91 cfs -16.177 af n=0.015 L=1,000.0' S=0.0100 '/' Capacity=1,809.44 cfs Outflow=340.56 cfs -16.177 af Inflow/Outflow still <<capacity 391.91

Reach 95R: DC-1

Avg. Depth=0.40' Max Vel=14.60 fps Inflow=60.95 cfs 2.862 af n=0.025 L=800.0' S=0.2325 '/' Capacity=292.29 cfs Outflow=60.41 cfs 2.862 af Q=120.4 cfs across bench at full depth

Reach 96R: DC-2

Avg. Depth=0.40' Max Vel=16.19 fps Inflow=67.20 cfs 3.116 af n=0.025 L=600.0' S=0.2867'/ Capacity=324.56 cfs Outflow=66.91 cfs 3.116 af Q=120.4 cfs across bench at full depth

Reach 97R: DC-3

Avg. Depth=0.41' Max Vel=16.55 fps Inflow=70.96 cfs 3.280 af n=0.025 L=465.0' S=0.2882 '/' Capacity=325.41 cfs Outflow=70.77 cfs 3.280 af Q=120.4 cfs across bench at full depth

Reach 98R: DC-4

Avg. Depth=0.33' Max Vel=14.56 fps Inflow=49.88 cfs 2.295 af n=0.025 L=415.0' S=0.2892 '/' Capacity=325.96 cfs Outflow=49.75 cfs 2.295 af Q=120.4 cfs across bench at full depth

Reach 99R: DC-5

Avg. Depth=0.34' Max Vel=14.84 fps Inflow=51.59 cfs 2.374 af n=0.025 L=390.0' S=0.2949 '/' Capacity=329.17 cfs Outflow=51.47 cfs 2.374 af Q=120.4 cfs across bench at full depth

Reach 100R: DC-6

Avg. Depth=0.41' Max Vel=16.05 fps Inflow=68.55 cfs 3.201 af n=0.025 L=280.0' S=0.2714'/' Capacity=315.81 cfs Outflow=68.47 cfs 3.201 af Q=120.4 cfs across bench at full depth

Reach 101R: DC-7

Avg. Depth=0.39' Max Vel=15.84 fps Inflow=65.04 cfs 3.006 af n=0.025 L=390.0' S=0.2769'/ Capacity=318.99 cfs Outflow=64.90 cfs 3.006 af Q=120.4 cfs across bench at full depth

Reach 102R: DC-8

Avg. Depth=0.37' Max Vel=15.34 fps Inflow=59.62 cfs 2.696 af n=0.025 L=430.0' S=0.2767 '/' Capacity=318.89 cfs Outflow=59.47 cfs 2.696 af Q=120.4 cfs across bench at full depth

Reach 103R: DC-9

Avg. Depth=0.33' Max Vel=13.99 fps Inflow=47.30 cfs 2.197 af n=0.025 L=450.0' S=0.2711'/ Capacity=315.63 cfs Outflow=47.14 cfs 2.197 af Q=120.4 cfs across bench at full depth

Reach 104R: DC-10

Avg. Depth=0.37' Max Vel=15.46 fps Inflow=58.89 cfs 2.735 af n=0.025 L=320.0' S=0.2875'/ Capacity=325.03 cfs Outflow=58.81 cfs 2.735 af Q=120.4 cfs across bench at full depth

Link 57L: PC 4A Inflow=40.72 cfs 1.912 af Primary=40.72 cfs 1.912 af

Link 58L: PC 4BInflow=109.16 cfs 5.113 af
Primary=109.16 cfs 5.113 af

Link 59L: PC 4CInflow=160.59 cfs 7.487 af
Primary=160.59 cfs 7.487 af

Link 60L: PC 4DInflow=210.30 cfs 9.782 af
Primary=210.30 cfs 9.782 af

Back calculated capacity for downchute at 7% slope across bench, with 1 ft flow depth Q= 120.4 cfs, V=13.4 fps

Revised by PGS 08/27/2021

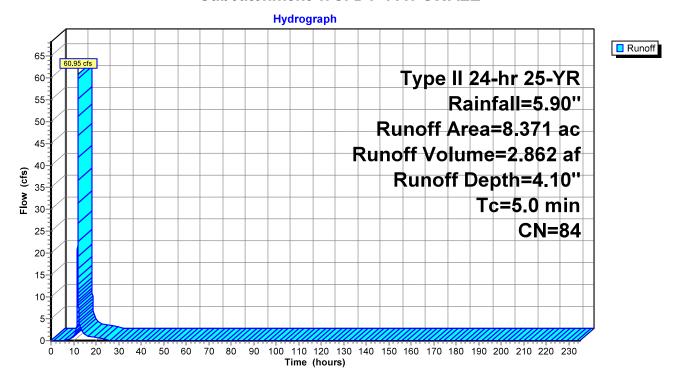
PC AND DOWNCHUTES 07152020

Type II 24-hr 25-YR Rainfall=5.90"

Prepared by {enter your company name here} HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC	Printed 7/18/2020 Page 6
Link 61L: PC 4E	Inflow=281.05 cfs 13.062 af Primary=281.05 cfs 13.062 af
Link 62L: PC 5	Inflow=81.01 cfs 3.836 af Primary=81.01 cfs 3.836 af
Link 63L: PC 3A	Inflow=15.97 cfs 0.750 af Primary=15.97 cfs 0.750 af
Link 64L: PC 3B	Inflow=80.84 cfs 3.756 af Primary=80.84 cfs 3.756 af
Link 65L: PC 3C	Inflow=140.25 cfs 6.452 af Primary=140.25 cfs 6.452 af
Link 66L: PC 3D	Inflow=197.64 cfs 9.120 af Primary=197.64 cfs 9.120 af
Link 67L: CROSS PIPE	Inflow=407.82 cfs 18.930 af Primary=407.82 cfs 18.930 af
Link 68L: PC 3E	Inflow=282.93 cfs 13.070 af Primary=282.93 cfs 13.070 af
Link 86L: PC 2	Inflow=31.83 cfs 3.029 af Primary=31.83 cfs 3.029 af
Link 87L: TO BASIN 1	Inflow=418.56 cfs 21.959 af Primary=418.56 cfs 21.959 af
Link 88L: PC 4F Add flows from 92S to include Culvert #6 flow	391.91 cfs Inflow= 347. 91 cfs 46.177 af

Total Runoff Area = 124.239 ac Runoff Volume = 38.137 af Average Runoff Depth = 3.68" 90.98% Pervious = 113.030 ac 9.02% Impervious = 11.209 ac

Primary=347.91 cfs 16.177 af 391.91 cfs

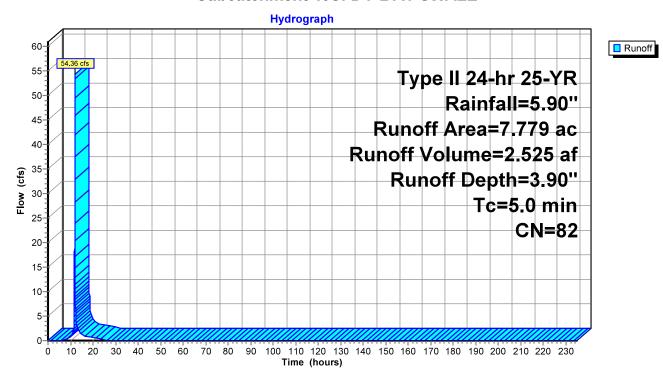

Summary for Subcatchment 47S: DC-1 AT SWALE

Runoff = 60.95 cfs @ 11.96 hrs, Volume= 2.862 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Area (ac)	CN	Desc	Description					
*	1.2	242	98	PER	PERIMETER ROAD					
	6.5	590	80	>75%	>75% Grass cover, Good, HSG D					
*	0.5	539	98	CAP	ACCESS					
	8.3	8.371 84 Weighted Average								
	6.5	6.590 Pervious Area				_				
	1.7	.781 Impervious Area				ea				
	Тс	Lengt	h	Slope	Velocity	Capacity	Description			
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description			
_		(iee	<u>')</u>	(IVIL)	(II/SEC)	(CIS)				
	5.0						Direct Entry,			

Subcatchment 47S: DC-1 AT SWALE


Summary for Subcatchment 48S: DC-2 AT SWALE

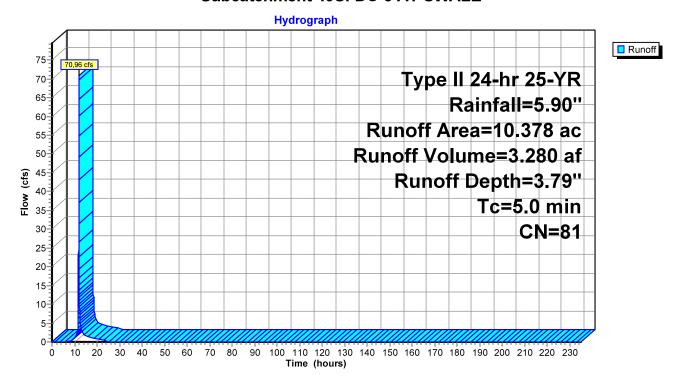
Runoff = 54.36 cfs @ 11.96 hrs, Volume= 2.525 af, Depth= 3.90"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

_	Area	(ac)	CN	Desc	Description				
*	0.	634	98	PER	PERIMETER ROAD				
	6.	920	80	>75%	√ Grass co	over, Good	d, HSG D		
*	0.	225	98	CAP	ROAD				
	7.779 82 Weighted Average				hted Aver	age			
	6.	6.920 Pervious Area							
	0.	0.859 Impervious Area			rvious Are	ea			
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
_	5.0	(100	<i>.</i> .,	(1010)	(18000)	(0.0)	Direct Entry,		

Subcatchment 48S: DC-2 AT SWALE

Printed 7/18/2020 Page 9


Summary for Subcatchment 49S: DC-3 AT SWALE

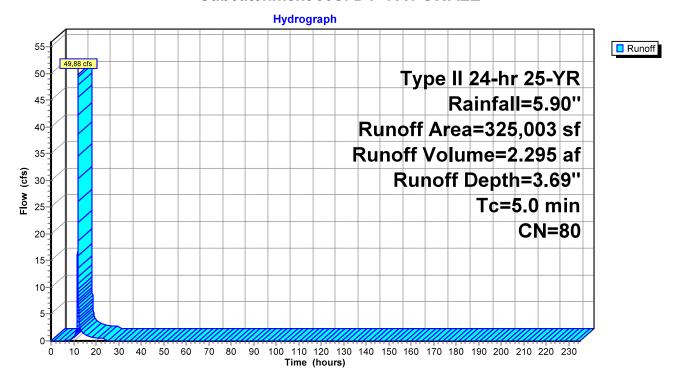
Runoff = 70.96 cfs @ 11.96 hrs, Volume= 3.280 af, Depth= 3.79"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Area	(ac)	CN	Desc	cription		
	0.	509	98	Pave	ed parking	& roofs	
	9.	869	80	>75%	√ Grass co	over, Good	I, HSG D
	10.	378	81	Weig	hted Aver	age	
	9.	869		Perv	ious Area	_	
	0.	509		Impe	ervious Are	ea	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_		(iee	ι)	(IVIL)	(IL/Sec)	(CIS)	B: (F)
	5.0						Direct Entry,

Subcatchment 49S: DC-3 AT SWALE

Printed 7/18/2020 Page 10

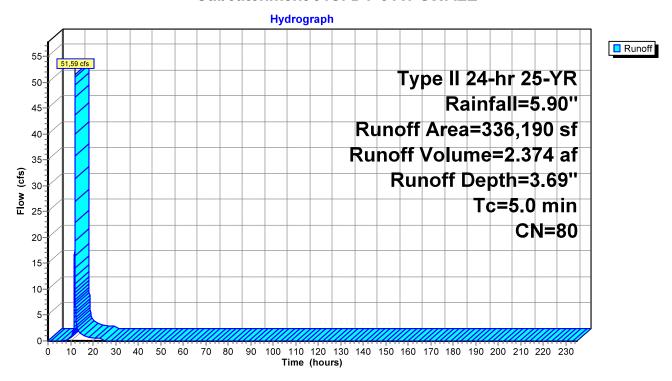

Summary for Subcatchment 50S: DC-4 AT SWALE

Runoff = 49.88 cfs @ 11.96 hrs, Volume= 2.295 af, Depth= 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Area (sf	f) CN	Description		
7,956	6 98	Paved park	ing & roofs	S
317,04	7 80	>75% Gras	s cover, Go	Good, HSG D
325,00	3 80	Weighted A	verage	
317,04	7	Pervious Ar	rea	
7,950	6	Impervious	Area	
Tc Leng (min) (fee		•	Capacity (cfs)	•
5.0				Direct Entry,

Subcatchment 50S: DC-4 AT SWALE


Summary for Subcatchment 51S: DC-5 AT SWALE

Runoff = 51.59 cfs @ 11.96 hrs, Volume= 2.374 af, Depth= 3.69"

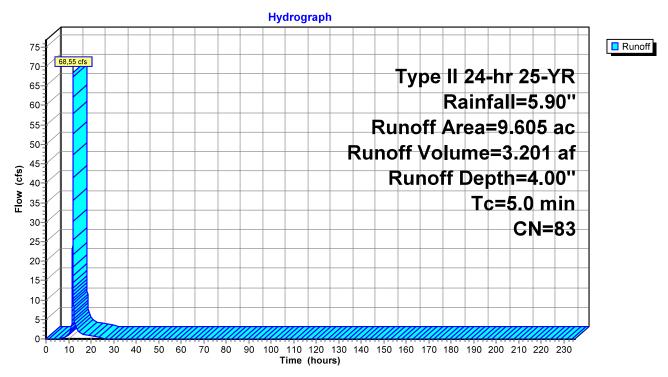
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Area (st	f) CN	Description		
8,29	3 98	Paved park	ing & roofs	S
327,89	7 80	>75% Gras	s cover, Go	Good, HSG D
336,19	0 80	Weighted A	verage	
327,89	7	Pervious Ar	rea	
8,29	3	Impervious	Area	
Tc Leng (min) (fee		•	Capacity (cfs)	•
5.0				Direct Entry,

Subcatchment 51S: DC-5 AT SWALE

Printed 7/18/2020

Page 12


Summary for Subcatchment 52S: DC-6 AT SWALE

Runoff = 68.55 cfs @ 11.96 hrs, Volume= 3.201 af, Depth= 4.00"

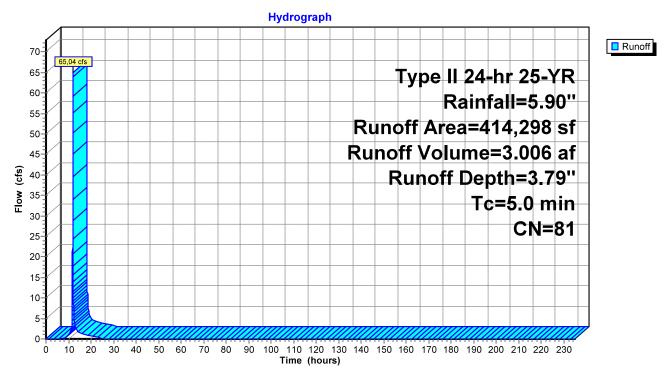
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

A	rea (a	ac) C	N Des	cription		
	1.3	39 9	8 Pav	ed parking	& roofs	
	8.2	66 8	0 >75	% Grass c	over, Good	d, HSG D
	9.6	05 8	3 Wei	ghted Avei	age	
	8.2	66	Per	ious Area		
	1.3	39	Impe	ervious Are	ea	
		Length	Slope	Velocity	Capacity	•
(m	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
;	5.0					Direct Entry,

Subcatchment 52S: DC-6 AT SWALE

71111leu //10/2020

<u>Page 13</u>

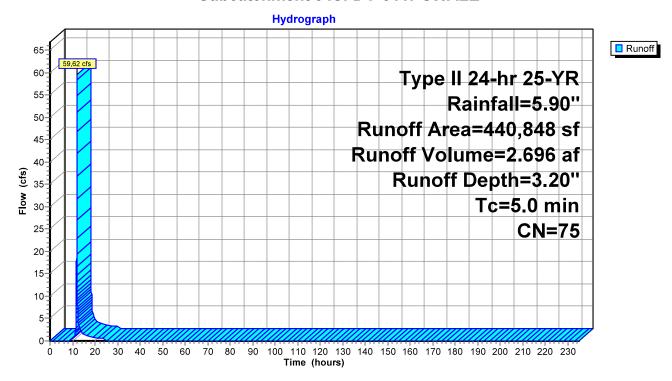

Summary for Subcatchment 53S: DC-7 AT SWALE

Runoff = 65.04 cfs @ 11.96 hrs, Volume= 3.006 af, Depth= 3.79"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Ar	ea (sf)	CN	Description		
	21,376	98	Paved park	ing & roofs	S
39	92,922	80	>75% Gras	s cover, Go	lood, HSG D
4	14,298	81	Weighted A	verage	
39	92,922		Pervious Ar	ea	
2	21,376		Impervious	Area	
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	•
5.0					Direct Entry,

Subcatchment 53S: DC-7 AT SWALE

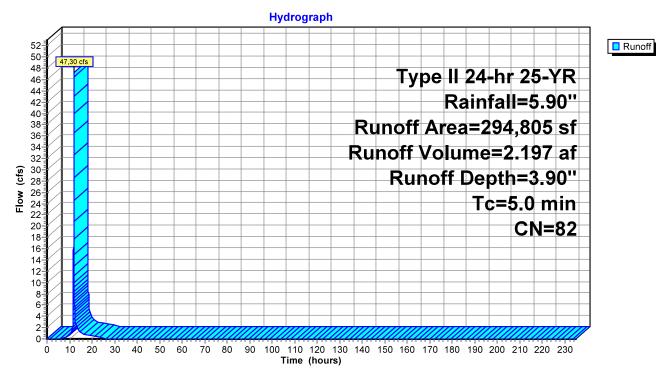

Summary for Subcatchment 54S: DC-8 AT SWALE

Runoff = 59.62 cfs @ 11.96 hrs, Volume= 2.696 af, Depth= 3.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Area (sf) CN	Description		
23,3	12 98	Paved park	ing & roofs	s
417,5	36 74	>75% Gras	s cover, Go	Good, HSG C
440,8	48 75	Weighted A	verage	
417,5	36	Pervious Ar	ea	
23,3	12	Impervious	Area	
Tc Ler (min) (fe	ngth Slo eet) (ft/		Capacity (cfs)	•
5.0				Direct Entry,

Subcatchment 54S: DC-8 AT SWALE

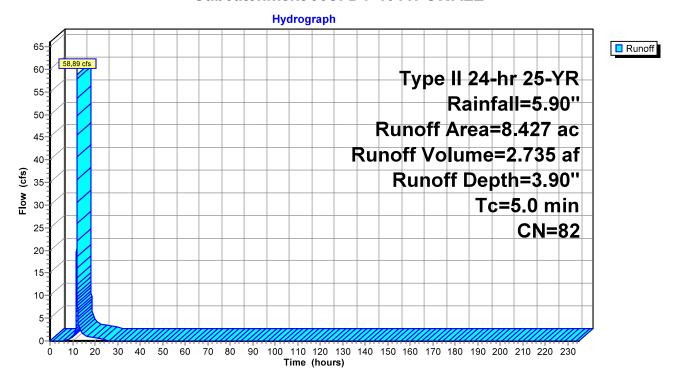

Summary for Subcatchment 55S: DC-9 AT SWALE

Runoff = 47.30 cfs @ 11.96 hrs, Volume= 2.197 af, Depth= 3.90"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Are	ea (sf)	CN I	Description		
2	9,366	98 I	Paved park	ing & roofs	S
26	5,439	80 >	>75% Gras	s cover, Go	lood, HSG D
29	4,805	82 \	Neighted A	verage	
26	5,439	F	Pervious Ar	ea	
2	9,366		mpervious	Area	
		٥.			5
	Length	Slope	•	Capacity	•
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,

Subcatchment 55S: DC-9 AT SWALE


Summary for Subcatchment 56S: DC-10 AT SWALE

Runoff = 58.89 cfs @ 11.96 hrs, Volume= 2.735 af, Depth= 3.90"

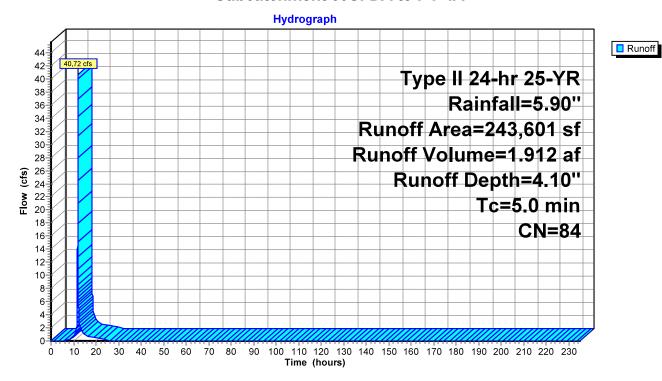
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Area	(ac)	CN	Desc	cription		
0	.707	98	Pave	ed parking	& roofs	
7	.720	80	>75%	√ Grass co	over, Good	I, HSG D
8	.427	82	Weig	hted Aver	age	
7	.720		Perv	ious Area	_	
0	.707		Impe	ervious Are	ea	
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0	(/	(()	()	Direct Entry,

Subcatchment 56S: DC-10 AT SWALE

Tillieu //10/2020

Page 17

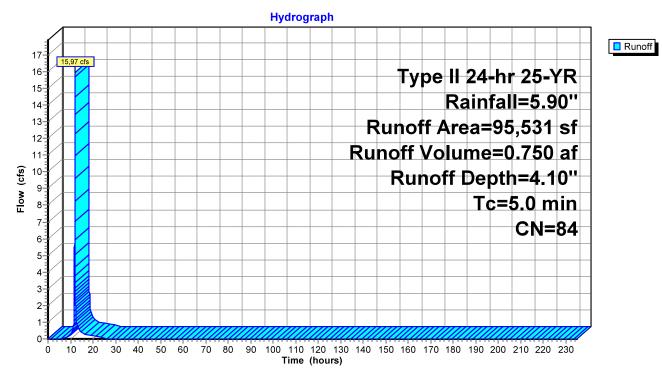

Summary for Subcatchment 69S: DA to PC 4A

Runoff = 40.72 cfs @ 11.96 hrs, Volume= 1.912 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Are	a (sf)	CN	Description		
5	3,337	98	Paved park	ing & roofs	S
190	0,264	80	>75% Gras	s cover, Go	lood, HSG D
243	3,601	84	Weighted A	verage	
190	0,264		Pervious Aı	ea	
5	3,337		Impervious	Area	
Tc l (min)	_ength (feet)	Slope (ft/ft)	,	Capacity (cfs)	•
5.0					Direct Entry,

Subcatchment 69S: DA to PC 4A

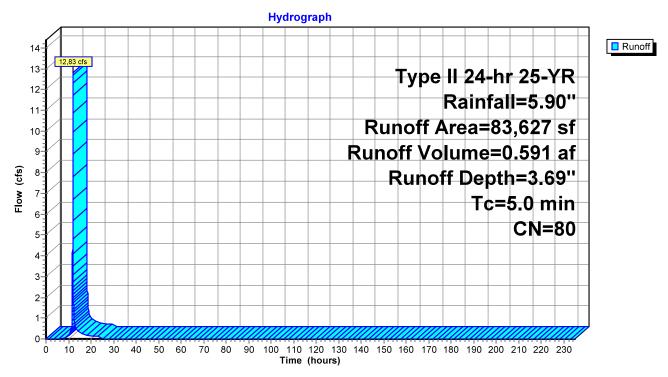

Summary for Subcatchment 70S: PC 3A

Runoff = 15.97 cfs @ 11.96 hrs, Volume= 0.750 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Ar	ea (sf)	CN	Description		
	20,880	98	Paved park	ing & roofs	s
	74,651	80	>75% Gras	s cover, Go	Good, HSG D
!	95,531	84	Weighted A	verage	
,	74,651		Pervious Aı	rea	
	20,880		Impervious	Area	
_					
Tc	Length	Slope	,	Capacity	•
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,

Subcatchment 70S: PC 3A


Summary for Subcatchment 93S: CAP ROAD to DC2

Runoff = 12.83 cfs @ 11.96 hrs, Volume= 0.591 af, Depth= 3.69"

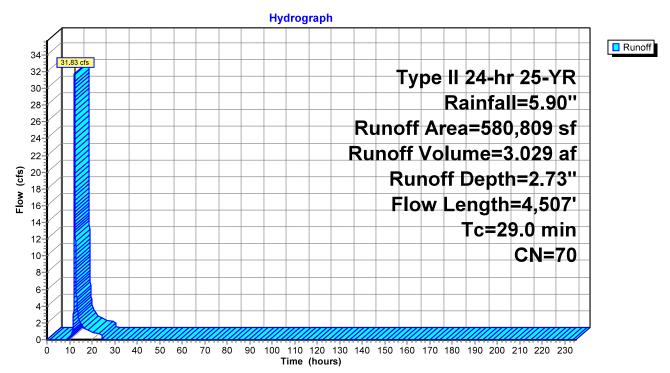
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Α	rea (sf)	CN	Description		
*		63,066	74	FROM APP	ROVED C	CALCS
		20,561	98	Paved road	s w/curbs &	& sewers
		83,627 63,066 20,561		Weighted A Pervious Ai Impervious	rea	
	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	•
	5.0					Direct Entry,

Subcatchment 93S: CAP ROAD to DC2

Printed 7/18/2020

Page 20


Summary for Subcatchment 94S: AREA TO SWALE 2

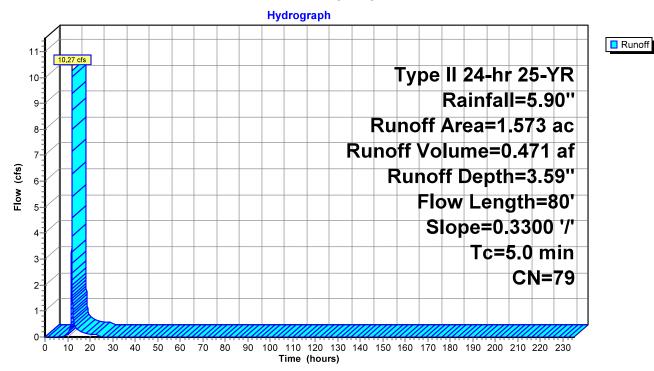
Runoff = 31.83 cfs @ 12.24 hrs, Volume= 3.029 af, Depth= 2.73"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Αı	rea (sf)	CN [Description			
-		23,760	30 \	Woods, Go	od, HSG A		
		29,120	70 \	Woods, Go	od, HSG C		
*	1	13,835	61 >	>75% Gras	s cover, Go	ood, HSG B (ONSITE A)	
*	2	72,732	80 >	75% Gras	s cover, Go	ood, HSG D (ONSITE C)	
*		12,155	80 >	>75% Gras	s cover, Go	ood, HSG D (ONSITE D)	
		33,629	30 \	Woods, Go	od, HSG A		
		31,887			od, HSG D		
*		63,691	76 F	RA ZONINO	G C SOILS		
	5	80,809	70 \	Neighted A	verage		
	5	80,809	F	Pervious Ar	ea		
	Тс	Length	Slope	•	Capacity	Description	
(min)	/E 1\					
	min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	6.8	(feet) 100	0.0500	(ft/sec) 0.25	(cfs)	Sheet Flow, A-B	
	6.8	100	0.0500	0.25	(cfs)	Grass: Short n= 0.150 P2= 3.20"	
					(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C	
	6.8 0.6	100 120	0.0500 0.0400	0.25 3.22	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps	
	6.8	100	0.0500	0.25	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D	
	6.8 0.6 0.1	100 120 27	0.0500 0.0400 0.3000	0.25 3.22 8.82	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps	
	6.8 0.6	100 120	0.0500 0.0400	0.25 3.22	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E	
	6.8 0.6 0.1 1.5	100 120 27 250	0.0500 0.0400 0.3000 0.0300	0.25 3.22 8.82 2.79		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps	
	6.8 0.6 0.1	100 120 27	0.0500 0.0400 0.3000	0.25 3.22 8.82	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, F-G	
	6.8 0.6 0.1 1.5	100 120 27 250	0.0500 0.0400 0.3000 0.0300	0.25 3.22 8.82 2.79		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, F-G Bot.W=5.00' D=0.50' Z= 2.0 '/' Top.W=7.00'	
	6.8 0.6 0.1 1.5	100 120 27 250	0.0500 0.0400 0.3000 0.0300	0.25 3.22 8.82 2.79		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, F-G	

Subcatchment 94S: AREA TO SWALE 2

Summary for Subcatchment 95S: Upslope Area of PC3D


10.27 cfs @ 11.96 hrs, Volume= Runoff 0.471 af, Depth= 3.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Area	(ac)	CN	Description							
	1.240 74 >75% Grass cover, Good, HSG C										
	0.333 98 Paved parking & roofs										
	1.573 79 Weighted Average										
1.240 Pervious Area											
	0.333 Imper					ea					
	_			_							
	Tc	Length		lope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	2.7	80	0.3	300	0.50		Sheet Flow, PErimeter Berm				
							Grass: Short n= 0.150 P2= 3.20"				
	2.7 80 Total, Increased to minimum Tc = 5.0 min						Tc = 5.0 min				

Total, Increased to minimum Tc = 5.0 min

Subcatchment 95S: Upslope Area of PC3D

Summary for Subcatchment 96S: Upslope Area of PC3E

Runoff 26.52 cfs @ 11.96 hrs, Volume= 1.215 af, Depth= 3.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Area	(ac)	CN	Desc	Description							
	3.	, HSG C										
0.797 98 Paved parking & roofs												
4.062 79 Weighted Average												
	3.	265		Perv	ious Area							
	0.797 Impervious Area											
	Tc	Lengtl		Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	2.7	80	0.	3300	0.50		Sheet Flow, Perimeter Berm					
							Grass: Short n= 0.150 P2= 3.20"					
	2.7 80 Total, Increased to minimum Tc = 5.0 min						Tc = 5.0 min					

Total, Increased to minimum Tc = 5.0 min

Subcatchment 96S: Upslope Area of PC3E

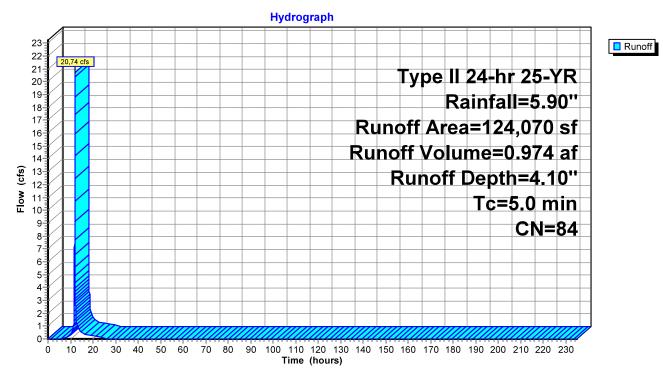
Summary for Subcatchment 106S: AREA TO DS-10 CULVERT

Runoff = 43.98 cfs @ 11.96 hrs, Volume= 2.024 af, Depth= 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

_											
	2	86,585	80 >	>75% Grass cover, Good, HSG D							
	286,585		F	Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
_	5.0	,/	(* 2 * 3)	()	()	Direct Entry,					

Subcatchment 106S: AREA TO DS-10 CULVERT


Summary for Subcatchment 107S: DA TO PC 5

Runoff = 20.74 cfs @ 11.96 hrs, Volume= 0.974 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Area (s	f) CN		Description						
*	27,65	7 98	P	PERIMETER ROAD						
	96,41	3 80	>	>75% Grass cover, Good, HSG D						
124,070 96,413 27,657		3	P	Veighted A Pervious Ar mpervious	rea 💍					
	Tc Leng (min) (fe	•	ope t/ft)	Velocity (ft/sec)	Capacity (cfs)	•				
	5.0					Direct Entry,				

Subcatchment 107S: DA TO PC 5

PC AND DOWNCHUTES 07152020

Prepared by {enter your company name here}

Type II 24-hr 25-YR Rainfall=5.90" Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 26

Summary for Reach 89R: PC 4G

Inflow Area = 50.453 ac, 9.47% Impervious, Inflow Depth = 3.85" for 25-YR event

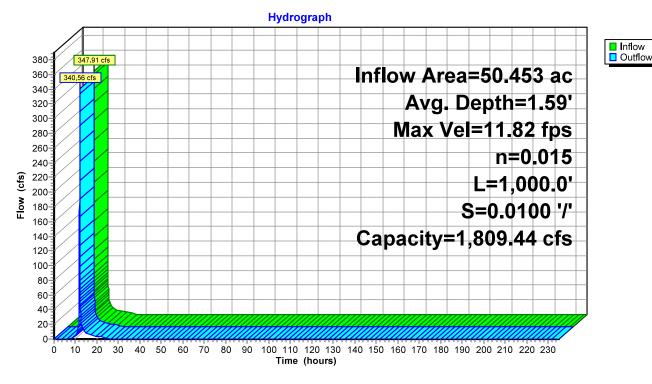
Inflow 347.91 cfs @ 11.96 hrs, Volume= 16.177 af

340.56 cfs @ 11.98 hrs, Volume= 391.1 (assume no attenuation) Outflow 16.177 af, Atten= 2%, Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Max. Velocity= 11.82 fps, Min. Travel Time= 1.4 min Avg. Velocity = 2.47 fps, Avg. Travel Time= 6.7 min

Peak Storage= 28,801 cf @ 11.98 hrs, Average Depth at Peak Storage= 1.59'


Bank-Full Depth= 4.00', Capacity at Bank-Full= 1,809.44 cfs

15.00' x 4.00' deep channel, n= 0.015 Side Slope Z-value= 2.0 '/' Top Width= 31.00' Length= 1,000.0' Slope= 0.0100 '/' Inlet Invert= 90.00', Outlet Invert= 80.00'

Depth and velocity at Q=391.91 cfs are 2.3 ft & 8.7 fps

‡

Reach 89R: PC 4G

PC AND DOWNCHUTES_07152020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 27

Inflow

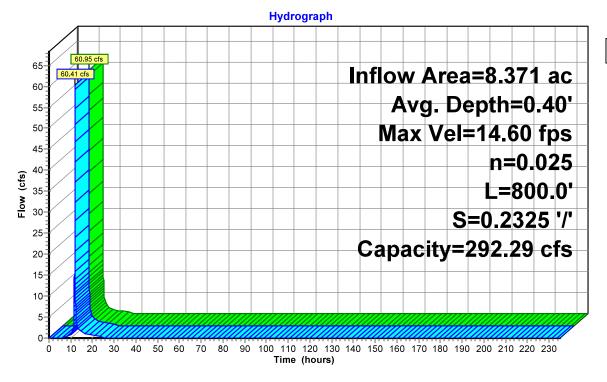
Summary for Reach 95R: DC-1

Inflow Area = 8.371 ac, 21.28% Impervious, Inflow Depth = 4.10" for 25-YR event

Inflow = 60.95 cfs @ 11.96 hrs, Volume= 2.862 af

Outflow = 60.41 cfs @ 11.97 hrs, Volume= 2.862 af, Atten= 1%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 14.60 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.94 fps, Avg. Travel Time= 4.5 min

Peak Storage= 3,310 cf @ 11.97 hrs, Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00', Capacity at Bank-Full= 292.29 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 800.0' Slope= 0.2325 '/' Inlet Invert= 264.00', Outlet Invert= 78.00'

‡

Reach 95R: DC-1

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 28

Inflow

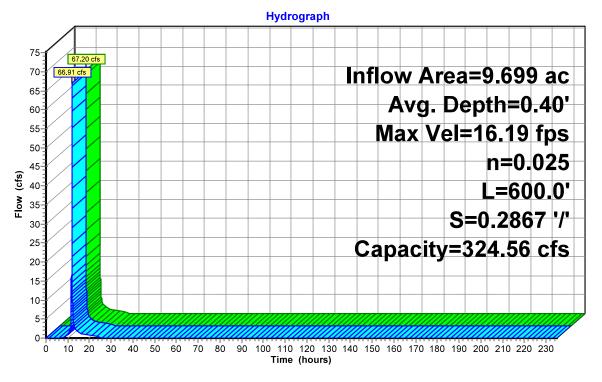
Summary for Reach 96R: DC-2

Inflow Area = 9.699 ac, 13.72% Impervious, Inflow Depth = 3.85" for 25-YR event

Inflow = 67.20 cfs @ 11.96 hrs, Volume= 3.116 af

Outflow = 66.91 cfs @ 11.97 hrs, Volume= 3.116 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 16.19 fps, Min. Travel Time= 0.6 min Avg. Velocity = 3.31 fps, Avg. Travel Time= 3.0 min

Peak Storage= 2,478 cf @ 11.97 hrs, Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00', Capacity at Bank-Full= 324.56 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 600.0' Slope= 0.2867 '/' Inlet Invert= 264.00', Outlet Invert= 92.00'

‡

Reach 96R: DC-2

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 29

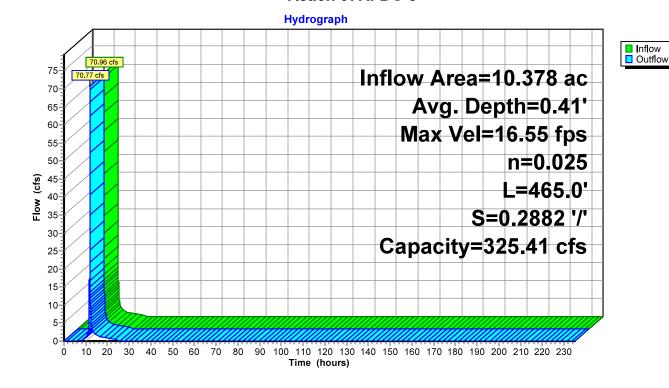
Summary for Reach 97R: DC-3

Inflow Area = 10.378 ac, 4.90% Impervious, Inflow Depth = 3.79" for 25-YR event

Inflow = 70.96 cfs @ 11.96 hrs, Volume= 3.280 af

Outflow = 70.77 cfs @ 11.96 hrs, Volume= 3.280 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 16.55 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.43 fps, Avg. Travel Time= 2.3 min

‡

Peak Storage= 1,988 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.00', Capacity at Bank-Full= 325.41 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 465.0' Slope= 0.2882 '/' Inlet Invert= 264.00', Outlet Invert= 130.00'

Reach 97R: DC-3

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 30

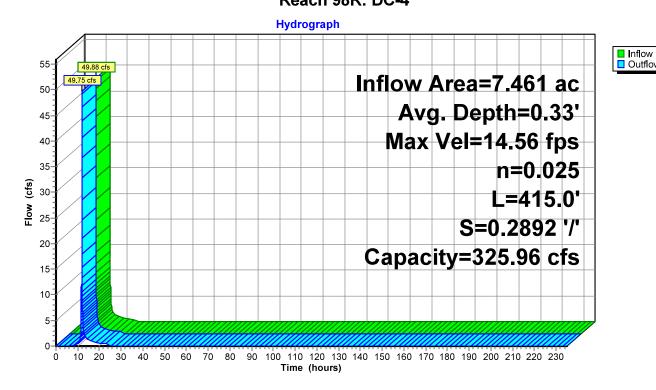
Summary for Reach 98R: DC-4

Inflow Area = 7.461 ac, 2.45% Impervious, Inflow Depth = 3.69" for 25-YR event

Inflow = 49.88 cfs @ 11.96 hrs, Volume= 2.295 af

Outflow = 49.75 cfs @ 11.97 hrs, Volume= 2.295 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 14.56 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.03 fps, Avg. Travel Time= 2.3 min

Peak Storage= 1,417 cf @ 11.97 hrs, Average Depth at Peak Storage= 0.33' Bank-Full Depth= 1.00', Capacity at Bank-Full= 325.96 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 415.0' Slope= 0.2892 '/' Inlet Invert= 264.00', Outlet Invert= 144.00'

Reach 98R: DC-4

‡

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 31

Inflow

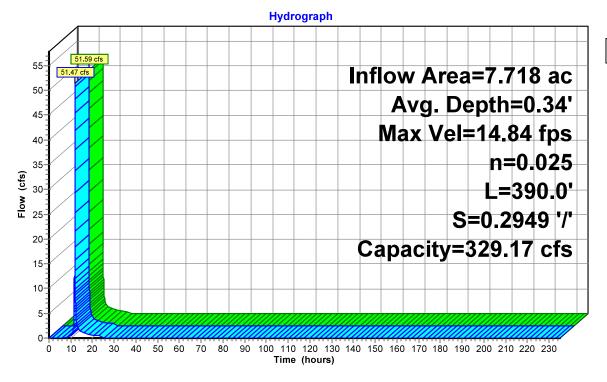
Summary for Reach 99R: DC-5

Inflow Area = 7.718 ac, 2.47% Impervious, Inflow Depth = 3.69" for 25-YR event

Inflow = 51.59 cfs @ 11.96 hrs, Volume= 2.374 af

Outflow = 51.47 cfs @ 11.96 hrs, Volume= 2.374 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 14.84 fps, Min. Travel Time= 0.4 min Avg. Velocity = 3.09 fps, Avg. Travel Time= 2.1 min

Peak Storage= 1,352 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00', Capacity at Bank-Full= 329.17 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 390.0' Slope= 0.2949 '/' Inlet Invert= 264.00', Outlet Invert= 149.00'

‡

Reach 99R: DC-5

Prepared by {enter your company name here}

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 32

Inflow
Outflow

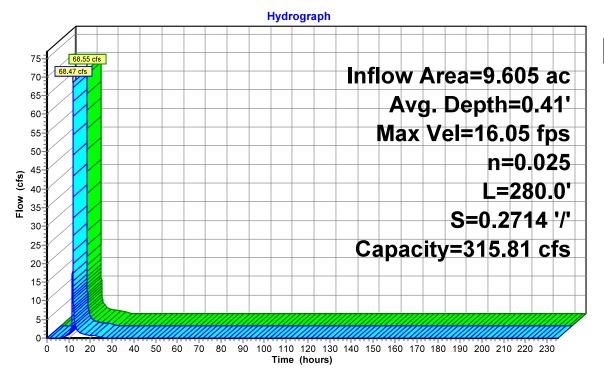
Summary for Reach 100R: DC-6

Inflow Area = 9.605 ac, 13.94% Impervious, Inflow Depth = 4.00" for 25-YR event

Inflow = 68.55 cfs @ 11.96 hrs, Volume= 3.201 af

Outflow = 68.47 cfs @ 11.96 hrs, Volume= 3.201 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 16.05 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.31 fps, Avg. Travel Time= 1.4 min

Peak Storage= 1,194 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.00', Capacity at Bank-Full= 315.81 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 280.0' Slope= 0.2714 '/' Inlet Invert= 230.00', Outlet Invert= 154.00'

‡

Reach 100R: DC-6

Inflow

PC AND DOWNCHUTES 07152020

Prepared by {enter your company name here}

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC Page 33

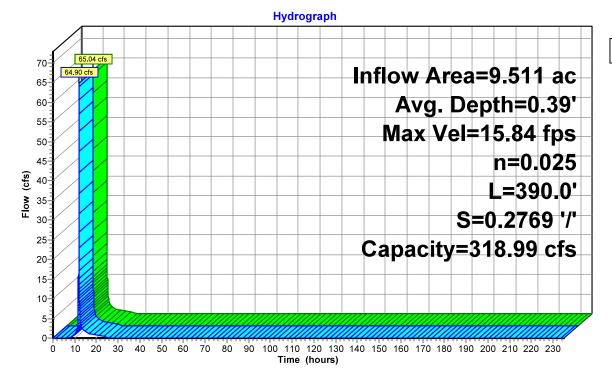
Summary for Reach 101R: DC-7

Inflow Area = 9.511 ac, 5.16% Impervious, Inflow Depth = 3.79" for 25-YR event

Inflow = 65.04 cfs @ 11.96 hrs, Volume= 3.006 af

Outflow = 64.90 cfs @ 11.96 hrs, Volume= 3.006 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 15.84 fps, Min. Travel Time= 0.4 min Avg. Velocity = 3.29 fps, Avg. Travel Time= 2.0 min

Peak Storage= 1,598 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.00', Capacity at Bank-Full= 318.99 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 390.0' Slope= 0.2769 '/' Inlet Invert= 266.00', Outlet Invert= 158.00'

‡

Reach 101R: DC-7

Prepared by {enter your company name here}

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 34

Inflow
Outflow

Summary for Reach 102R: DC-8

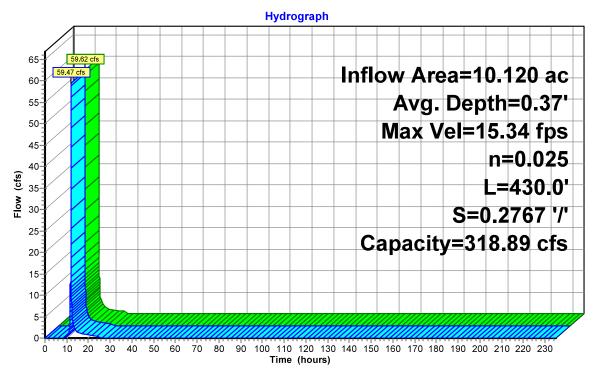
Inflow Area = 10.120 ac, 5.29% Impervious, Inflow Depth = 3.20" for 25-YR event

Inflow = 59.62 cfs @ 11.96 hrs, Volume= 2.696 af

Outflow = 59.47 cfs @ 11.97 hrs, Volume= 2.696 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Max. Velocity= 15.34 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.30 fps, Avg. Travel Time= 2.2 min


Peak Storage= 1,666 cf @ 11.97 hrs, Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00', Capacity at Bank-Full= 318.89 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 430.0' Slope= 0.2767 '/'

Inlet Invert= 262.00', Outlet Invert= 143.00'

‡

Reach 102R: DC-8

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 35

Inflow

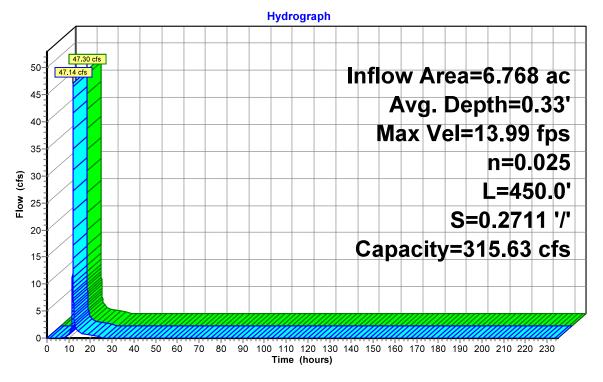
Summary for Reach 103R: DC-9

Inflow Area = 6.768 ac, 9.96% Impervious, Inflow Depth = 3.90" for 25-YR event

Inflow = 47.30 cfs @ 11.96 hrs, Volume= 2.197 af

Outflow = 47.14 cfs @ 11.97 hrs, Volume= 2.197 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 13.99 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.88 fps, Avg. Travel Time= 2.6 min

Peak Storage= 1,515 cf @ 11.97 hrs, Average Depth at Peak Storage= 0.33' Bank-Full Depth= 1.00', Capacity at Bank-Full= 315.63 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 450.0' Slope= 0.2711 '/' Inlet Invert= 252.00', Outlet Invert= 130.00'

‡

Reach 103R: DC-9

Prepared by {enter your company name here}

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

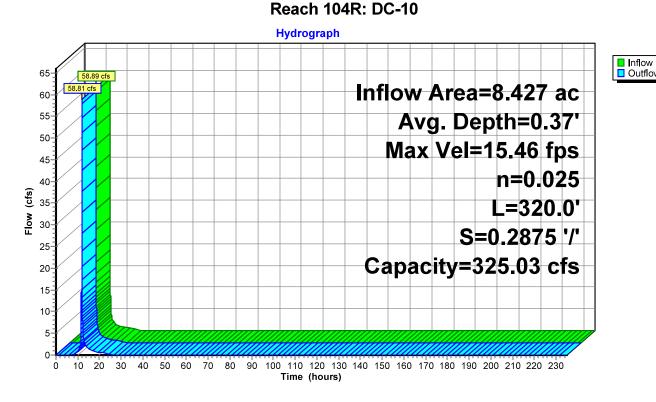
Page 36

Summary for Reach 104R: DC-10

Inflow Area = 8.427 ac, 8.39% Impervious, Inflow Depth = 3.90" for 25-YR event

Inflow = 58.89 cfs @ 11.96 hrs, Volume= 2.735 af

Outflow = 58.81 cfs @ 11.96 hrs, Volume= 2.735 af, Atten= 0%, Lag= 0.2 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Max. Velocity= 15.46 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.20 fps, Avg. Travel Time= 1.7 min

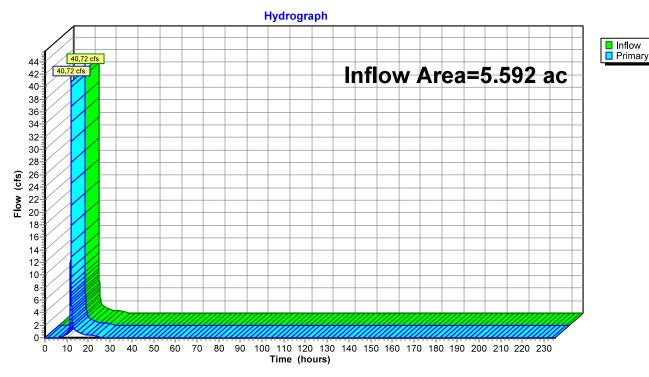
‡

Peak Storage= 1,217 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00', Capacity at Bank-Full= 325.03 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 320.0' Slope= 0.2875 '/' Inlet Invert= 210.00', Outlet Invert= 118.00'

Page 37

Summary for Link 57L: PC 4A


Inflow Area = 5.592 ac, 21.90% Impervious, Inflow Depth = 4.10" for 25-YR event

Inflow = 40.72 cfs @ 11.96 hrs, Volume= 1.912 af

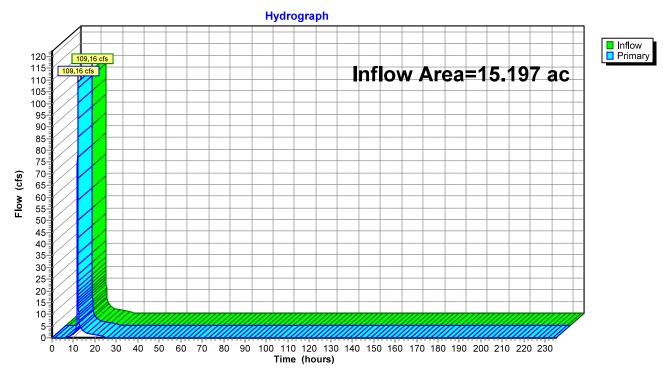
Primary = 40.72 cfs @ 11.96 hrs, Volume= 1.912 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 57L: PC 4A

Page 38

Summary for Link 58L: PC 4B


Inflow Area = 15.197 ac, 16.87% Impervious, Inflow Depth = 4.04" for 25-YR event

Inflow 109.16 cfs @ 11.96 hrs, Volume= 5.113 af

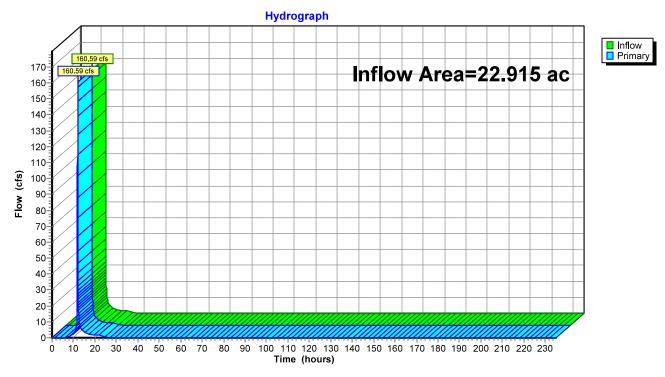
109.16 cfs @ 11.96 hrs, Volume= 5.113 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 58L: PC 4B

Page 39

Summary for Link 59L: PC 4C


Inflow Area = 22.915 ac, 12.02% Impervious, Inflow Depth = 3.92" for 25-YR event

Inflow 160.59 cfs @ 11.96 hrs, Volume= 7.487 af

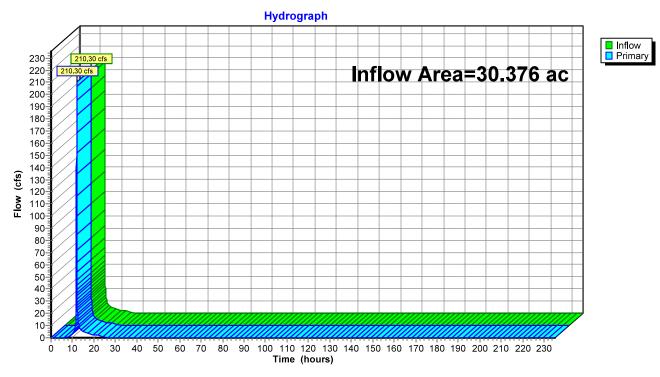
160.59 cfs @ 11.96 hrs, Volume= 7.487 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 59L: PC 4C

Page 40

Summary for Link 60L: PC 4D


Inflow Area = 30.376 ac, 9.67% Impervious, Inflow Depth = 3.86" for 25-YR event

Inflow 210.30 cfs @ 11.96 hrs, Volume= 9.782 af

210.30 cfs @ 11.96 hrs, Volume= 9.782 af, Atten= 0%, Lag= 0.0 min Primary

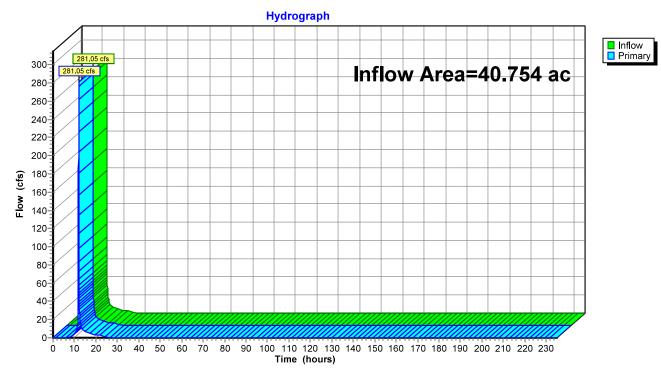
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 60L: PC 4D

Printed 7/18/2020

Page 41

Summary for Link 61L: PC 4E


Inflow Area = 40.754 ac, 8.45% Impervious, Inflow Depth = 3.85" for 25-YR event

Inflow = 281.05 cfs @ 11.96 hrs, Volume= 13.062 af

Primary = 281.05 cfs @ 11.96 hrs, Volume= 13.062 af, Atten= 0%, Lag= 0.0 min

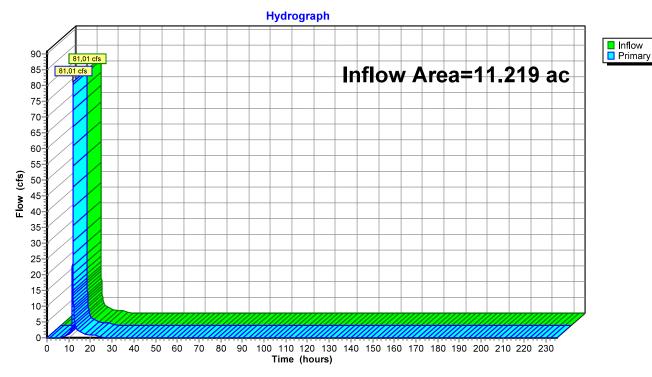
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 61L: PC 4E

- IIIIleu // 10/2020

Page 42

Summary for Link 62L: PC 5


Inflow Area = 11.219 ac, 21.53% Impervious, Inflow Depth = 4.10" for 25-YR event

Inflow = 81.01 cfs @ 11.97 hrs, Volume= 3.836 af

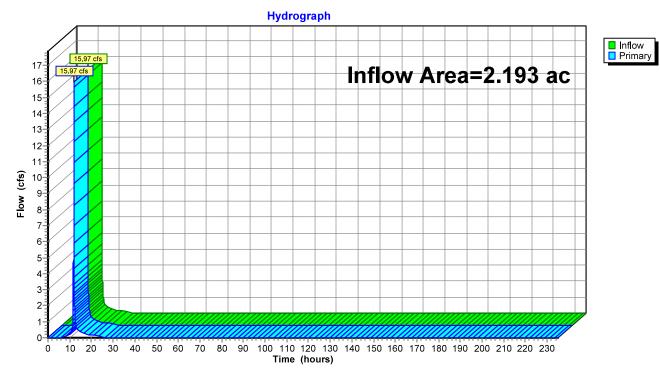
Primary = 81.01 cfs @ 11.97 hrs, Volume= 3.836 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 62L: PC 5

Page 43

Summary for Link 63L: PC 3A


Inflow Area = 2.193 ac, 21.86% Impervious, Inflow Depth = 4.10" for 25-YR event

Inflow = 15.97 cfs @ 11.96 hrs, Volume= 0.750 af

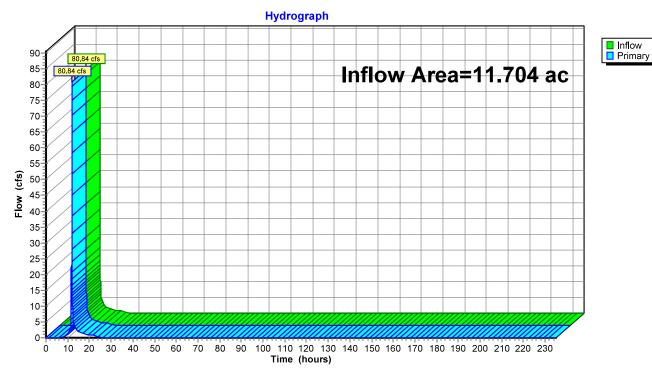
Primary = 15.97 cfs @ 11.96 hrs, Volume= 0.750 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 63L: PC 3A

Page 44

Summary for Link 64L: PC 3B


Inflow Area = 11.704 ac, 8.29% Impervious, Inflow Depth = 3.85" for 25-YR event

Inflow = 80.84 cfs @ 11.96 hrs, Volume= 3.756 af

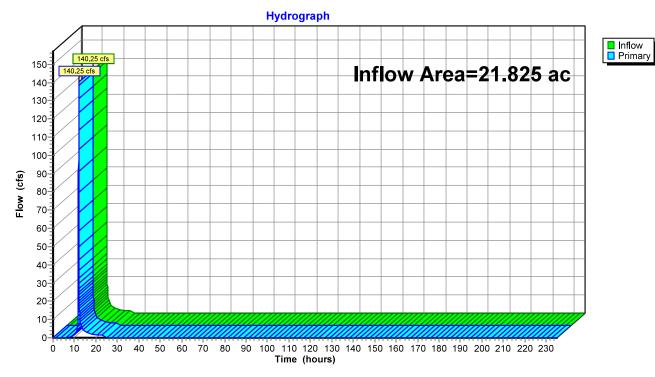
Primary = 80.84 cfs @ 11.96 hrs, Volume= 3.756 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 64L: PC 3B

Page 45

Summary for Link 65L: PC 3C


Inflow Area = 21.825 ac, 6.90% Impervious, Inflow Depth = 3.55" for 25-YR event

Inflow 140.25 cfs @ 11.96 hrs, Volume= 6.452 af

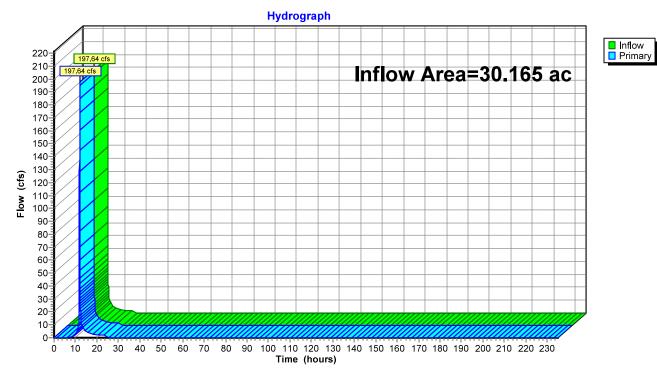
140.25 cfs @ 11.96 hrs, Volume= 6.452 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 65L: PC 3C

<u>Page 46</u>

Summary for Link 66L: PC 3D


Inflow Area = 30.165 ac, 8.33% Impervious, Inflow Depth = 3.63" for 25-YR event

Inflow = 197.64 cfs @ 11.96 hrs, Volume= 9.120 af

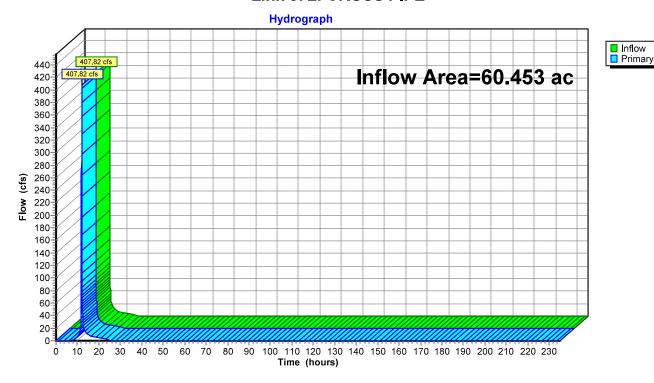
Primary = 197.64 cfs @ 11.96 hrs, Volume= 9.120 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 66L: PC 3D

Page 47

Summary for Link 67L: CROSS PIPE


Inflow Area = 60.453 ac, 10.64% Impervious, Inflow Depth = 3.76" for 25-YR event

Inflow = 407.82 cfs @ 11.96 hrs, Volume= 18.930 af

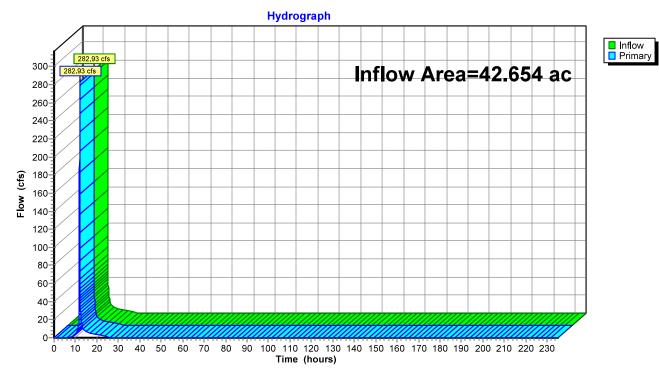
Primary = 407.82 cfs @ 11.96 hrs, Volume= 18.930 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 67L: CROSS PIPE

Page 48

Summary for Link 68L: PC 3E


Inflow Area = 42.654 ac, 9.42% Impervious, Inflow Depth = 3.68" for 25-YR event

Inflow = 282.93 cfs @ 11.96 hrs, Volume= 13.070 af

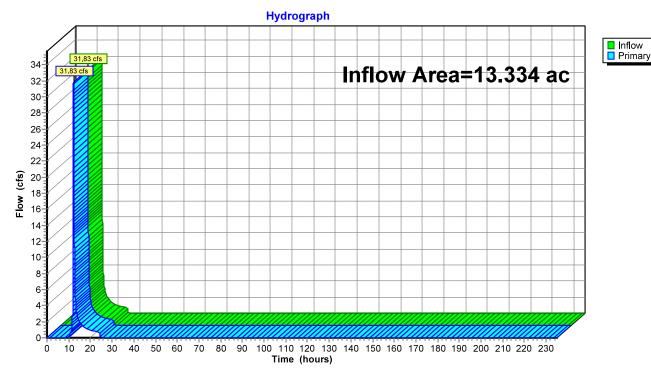
Primary = 282.93 cfs @ 11.96 hrs, Volume= 13.070 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 68L: PC 3E

Page 49

Summary for Link 86L: PC 2


Inflow Area = 13.334 ac, 0.00% Impervious, Inflow Depth = 2.73" for 25-YR event

Inflow = 31.83 cfs @ 12.24 hrs, Volume= 3.029 af

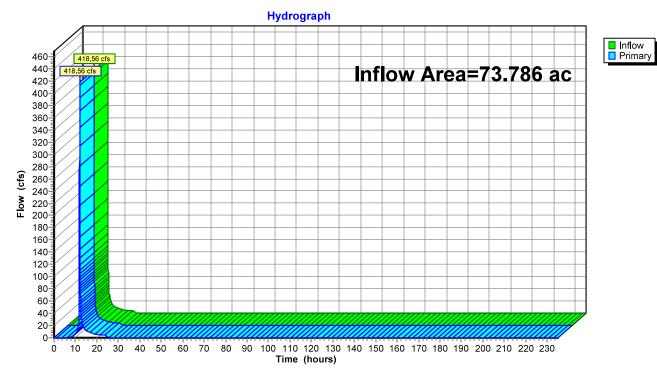
Primary = 31.83 cfs @ 12.24 hrs, Volume= 3.029 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 86L: PC 2

Page 50

Summary for Link 87L: TO BASIN 1


Inflow Area = 73.786 ac, 8.72% Impervious, Inflow Depth = 3.57" for 25-YR event

Inflow = 418.56 cfs @ 11.96 hrs, Volume= 21.959 af

Primary = 418.56 cfs @ 11.96 hrs, Volume= 21.959 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 87L: TO BASIN 1

Type II 24-hr 25-YR Rainfall=5.90"

Prepared by {enter your company name here}

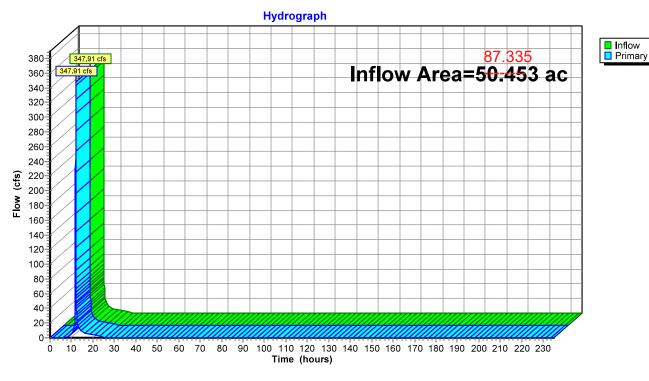
Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 51

Summary for Link 88L: PC 4F

Inflow Area = \frac{-50.453}{-30.453} ac, 9.47\% Impervious, Inflow Depth = 3.85\" for 25-YR event


Inflow = $\frac{347.91}{1.96}$ cfs @ 11.96 hrs, Volume= $\frac{16.177}{1.96}$ af

Primary = 347.91 cfs @ 11.96 hrs, Volume= 16.177 af, Atten= 0%, Lag= 0.0 min

391.91 cfs 20.390

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 88L: PC 4F

Type II 24-hr 100-YR NOAA Rainfall=8.50"

Prepared by {enter your company name here}

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 52

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 47S: DC-1 AT SWALE	Runoff Area=8.371 ac 21.28% Impervious Runoff Depth=6.58" Tc=5.0 min CN=84 Runoff=94.79 cfs 4.587 af
Subcatchment 48S: DC-2 AT SWALE	Runoff Area=7.779 ac 11.04% Impervious Runoff Depth=6.34" Tc=5.0 min CN=82 Runoff=85.88 cfs 4.107 af
Subcatchment 49S: DC-3 AT SWALE	Runoff Area=10.378 ac 4.90% Impervious Runoff Depth=6.22" Tc=5.0 min CN=81 Runoff=113.02 cfs 5.375 af
Subcatchment 50S: DC-4 AT SWALE	Runoff Area=325,003 sf 2.45% Impervious Runoff Depth=6.10" Tc=5.0 min CN=80 Runoff=80.10 cfs 3.790 af
Subcatchment 51S: DC-5 AT SWALE	Runoff Area=336,190 sf 2.47% Impervious Runoff Depth=6.10" Tc=5.0 min CN=80 Runoff=82.86 cfs 3.920 af
Subcatchment 52S: DC-6 AT SWALE	Runoff Area=9.605 ac 13.94% Impervious Runoff Depth=6.46" Tc=5.0 min CN=83 Runoff=107.42 cfs 5.167 af
Subcatchment 53S: DC-7 AT SWALE	Runoff Area=414,298 sf 5.16% Impervious Runoff Depth=6.22" Tc=5.0 min CN=81 Runoff=103.58 cfs 4.926 af
Subcatchment 54S: DC-8 AT SWALE	Runoff Area=440,848 sf 5.29% Impervious Runoff Depth=5.50" Tc=5.0 min CN=75 Runoff=100.17 cfs 4.634 af
Subcatchment 55S: DC-9 AT SWALE	Runoff Area=294,805 sf 9.96% Impervious Runoff Depth=6.34" Tc=5.0 min CN=82 Runoff=74.71 cfs 3.573 af
Subcatchment 56S: DC-10 AT SWALE	Runoff Area=8.427 ac 8.39% Impervious Runoff Depth=6.34" Tc=5.0 min CN=82 Runoff=93.03 cfs 4.449 af
Subcatchment 69S: DA to PC 4A	Runoff Area=243,601 sf 21.90% Impervious Runoff Depth=6.58" Tc=5.0 min CN=84 Runoff=63.32 cfs 3.065 af
Subcatchment 70S: PC 3A	Runoff Area=95,531 sf 21.86% Impervious Runoff Depth=6.58" Tc=5.0 min CN=84 Runoff=24.83 cfs 1.202 af
Subcatchment 93S: CAP ROAD to DC2	Runoff Area=83,627 sf 24.59% Impervious Runoff Depth=6.10" Tc=5.0 min CN=80 Runoff=20.61 cfs 0.975 af
	Runoff Area=580,809 sf 0.00% Impervious Runoff Depth=4.90" w Length=4,507' Tc=29.0 min CN=70 Runoff=57.96 cfs 5.441 af
	D Runoff Area=1.573 ac 21.17% Impervious Runoff Depth=5.98" Slope=0.3300 '/' Tc=5.0 min CN=79 Runoff=16.64 cfs 0.783 af

Subcatchment 96S: Upslope Area of PC3E Runoff Area=4.062 ac 19.62% Impervious Runoff Depth=5.98"

Flow Length=80' Slope=0.3300 '/' Tc=5.0 min CN=79 Runoff=42.96 cfs 2.023 af

Type II 24-hr 100-YR NOAA Rainfall=8.50"

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 53

Subcatchment 106S: AREA TO DS-10 Runoff Area=286,585 sf 0.00% Impervious Runoff Depth=6.10"

Tc=5.0 min CN=80 Runoff=70.63 cfs 3.342 af

Subcatchment 107S: DA TO PC 5 Runoff Area=124,070 sf 22.29% Impervious Runoff Depth=6.58"

Tc=5.0 min CN=84 Runoff=32,25 cfs 1.561 af

Reach 89R: PC 4G Avg. Depth=2.07' Max Vel=13.72 fps Inflow=552.08 cfs 26.400 af

n=0.015 L=1,000.0' S=0.0100'/' Capacity=1,809.44 cfs Outflow=542.99 cfs 26.400 af

Reach 95R: DC-1Avg. Depth=0.52' Max Vel=17.11 fps Inflow=94.79 cfs 4.587 af n=0.025 L=800.0' S=0.2325'/ Capacity=292.29 cfs Outflow=94.16 cfs 4.587 af

Reach 96R: DC-2 Avg. Depth=0.52' Max Vel=19.10 fps Inflow=106.49 cfs 5.082 af n=0.025 L=600.0' S=0.2867 '/' Capacity=324.56 cfs Outflow=106.14 cfs 5.082 af

Reach 97R: DC-3 Avg. Depth=0.54' Max Vel=19.56 fps Inflow=113.02 cfs 5.375 af n=0.025 L=465.0' S=0.2882 '/' Capacity=325.41 cfs Outflow=112.80 cfs 5.375 af

Reach 98R: DC-4 Avg. Depth=0.44' Max Vel=17.32 fps Inflow=80.10 cfs 3.790 af

n=0.025 L=415.0' S=0.2892 '/' Capacity=325.96 cfs Outflow=79.94 cfs 3.790 af

Reach 99R: DC-5Avg. Depth=0.45' Max Vel=17.64 fps Inflow=82.86 cfs 3.920 af n=0.025 L=390.0' S=0.2949 '/' Capacity=329.17 cfs Outflow=82.72 cfs 3.920 af

' '

Reach 100R: DC-6 Avg. Depth=0.53' Max Vel=18.85 fps Inflow=107.42 cfs 5.167 af n=0.025 L=280.0' S=0.2714 '/' Capacity=315.81 cfs Outflow=107.34 cfs 5.167 af

Reach 101R: DC-7 Avg. Depth=0.52' Max Vel=18.72 fps Inflow=103.58 cfs 4.926 af n=0.025 L=390.0' S=0.2769 '/' Capacity=318.99 cfs Outflow=103.42 cfs 4.926 af

Reach 102R: DC-8 Avg. Depth=0.51' Max Vel=18.49 fps Inflow=100.17 cfs 4.634 af n=0.025 L=430.0' S=0.2767 '/' Capacity=318.89 cfs Outflow=99.97 cfs 4.634 af

Reach 103R: DC-9 Avg. Depth=0.43' Max Vel=16.54 fps Inflow=74.71 cfs 3.573 af n=0.025 L=450.0' S=0.2711 '/' Capacity=315.63 cfs Outflow=74.53 cfs 3.573 af

Reach 104R: DC-10

Avg. Depth=0.48' Max Vel=18.25 fps Inflow=93.03 cfs 4.449 af n=0.025 L=320.0' S=0.2875 '/' Capacity=325.03 cfs Outflow=92.93 cfs 4.449 af

Link 57L: PC 4A Inflow=63.32 cfs 3.065 af

Primary=63.32 cfs 3.065 af

Link 58L: PC 4BInflow=170.64 cfs 8.232 af
Primary=170.64 cfs 8.232 af

Link 59L: PC 4C Inflow=253.31 cfs 12.152 af Primary=253.31 cfs 12.152 af

Link 60L: PC 4D Inflow=333.21 cfs 15.942 af

Primary=333.21 cfs 15.942 af

PC AND DOWNCHUTES_07152020 Prepared by {enter your company name here} HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solu	Type II 24-hr 100-YR NOAA Rainfall=8.50" Printed 7/18/2020 utions LLC Page 54
Link 61L: PC 4E	Inflow=445.99 cfs 21.317 af Primary=445.99 cfs 21.317 af
Link 62L: PC 5	Inflow=126.24 cfs 6.148 af Primary=126.24 cfs 6.148 af
Link 63L: PC 3A	Inflow=24.83 cfs 1.202 af Primary=24.83 cfs 1.202 af
Link 64L: PC 3B	Inflow=128.22 cfs 6.128 af Primary=128.22 cfs 6.128 af
Link 65L: PC 3C	Inflow=228.15 cfs 10.762 af Primary=228.15 cfs 10.762 af

Link 66L: PC 3D Inflow=319.29 cfs 15.119 af Primary=319.29 cfs 15.119 af

Link 67L: CROSS PIPE Inflow=651.89 cfs 31.081 af Primary=651.89 cfs 31.081 af

Link 68L: PC 3E Inflow=455.14 cfs 21.591 af Primary=455.14 cfs 21.591 af

Link 86L: PC 2 Inflow=57.96 cfs 5.441 af Primary=57.96 cfs 5.441 af

Link 87L: TO BASIN 1 Inflow=673.39 cfs 36.522 af

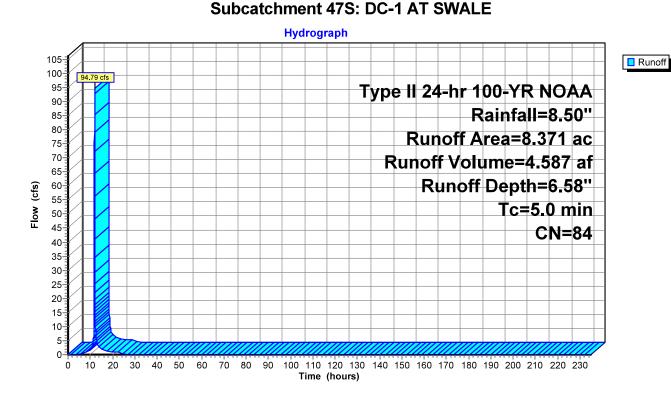
Primary=673.39 cfs 36.522 af 653.39 35.297 Inflow=552.08 efs 26.400 af Link 88L: PC 4F

Primary=552.08 cfs 26.400 af 653.39 35.297

Total Runoff Area = 124.239 ac Runoff Volume = 62.922 af Average Runoff Depth = 6.08" 90.98% Pervious = 113.030 ac 9.02% Impervious = 11.209 ac

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC


Page 55

Summary for Subcatchment 47S: DC-1 AT SWALE

Runoff = 94.79 cfs @ 11.96 hrs, Volume= 4.587 af, Depth= 6.58"

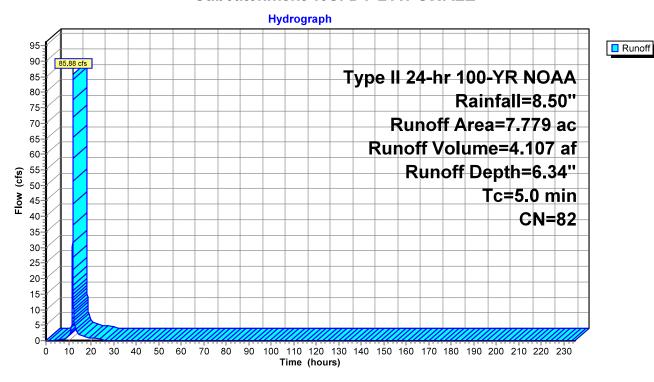
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area	(ac)	CN	Desc	cription					
*	1.:	242	98	PER	IMETER F	ROAD				
	6.	590	80	>75%	>75% Grass cover, Good, HSG D					
*	0.	539	98	CAP	ACCESS					
	8.	371	71 84 Weighted Average							
	6.	590	590 Pervious Area							
	1.	781		Impe	ervious Are	ea				
	Тс	Leng		Slope	Velocity	Capacity	•			
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)				
	5.0						Direct Entry,			

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 56


Summary for Subcatchment 48S: DC-2 AT SWALE

Runoff = 85.88 cfs @ 11.96 hrs, Volume= 4.107 af, Depth= 6.34"

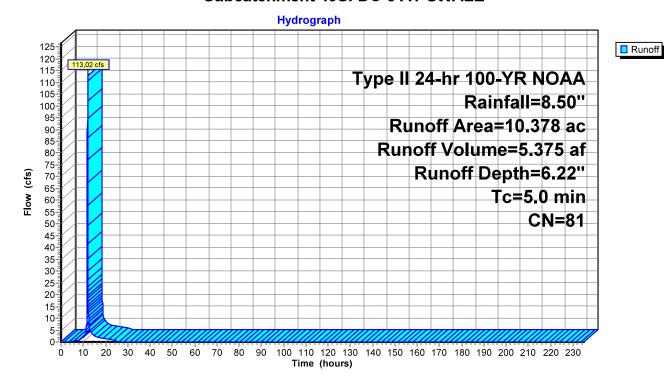
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

_	Area	(ac)	CN	Desc	cription		
*	0.	634	98	PER	IMETER F	ROAD	
	6.	920	80	>75%	√ Grass co	over, Good	d, HSG D
*	0.	225	98	CAP	ROAD		
	7.	779	82	Weig	hted Aver	age	
	6.	6.920 Pervious Area					
	0.	859		Impe	ervious Are	ea	
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	5.0						Direct Entry,

Subcatchment 48S: DC-2 AT SWALE

Printed 7/18/2020

Page 57


Summary for Subcatchment 49S: DC-3 AT SWALE

Runoff = 113.02 cfs @ 11.96 hrs, Volume= 5.375 af, Depth= 6.22"

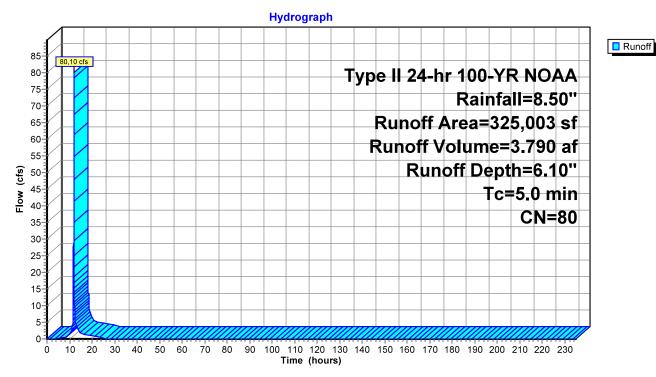
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area	(ac)	CN	Desc	Description				
	0.	509	98	Pave	ed parking	& roofs			
	9.	869	80	>75%	√ Grass co	over, Good	I, HSG D		
	10.	10.378 81 Weighted Average							
	9.869 Pervious Area				ious Area	_			
	0.	509		Impe	ervious Are	ea			
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
_		(iee	ι)	(IVIL)	(II/Sec)	(CIS)	B: (F)		
	5.0						Direct Entry,		

Subcatchment 49S: DC-3 AT SWALE

Printed 7/18/2020

Page 58


Summary for Subcatchment 50S: DC-4 AT SWALE

Runoff = 80.10 cfs @ 11.96 hrs, Volume= 3.790 af, Depth= 6.10"

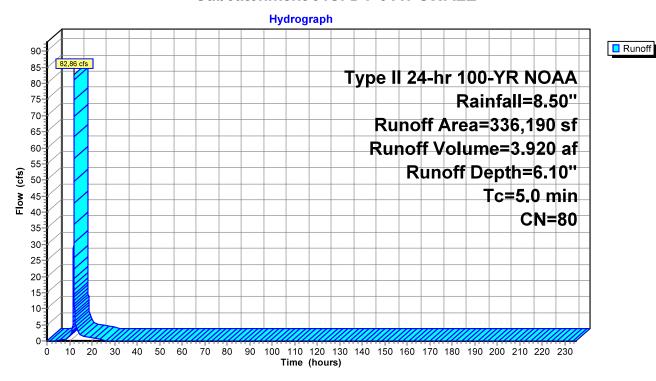
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Ar	ea (sf)	CN	Description				
	7,956	98	Paved park	ing & roofs	s		
3^	17,047	80	>75% Gras	s cover, Go	Good, HSG D		
32	25,003	80	Weighted Average				
31	17,047		Pervious Ar	ea			
	7,956		mpervious	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	•		
5.0					Direct Entry,		

Subcatchment 50S: DC-4 AT SWALE

Printed 7/18/2020

Page 59


Summary for Subcatchment 51S: DC-5 AT SWALE

Runoff = 82.86 cfs @ 11.96 hrs, Volume= 3.920 af, Depth= 6.10"

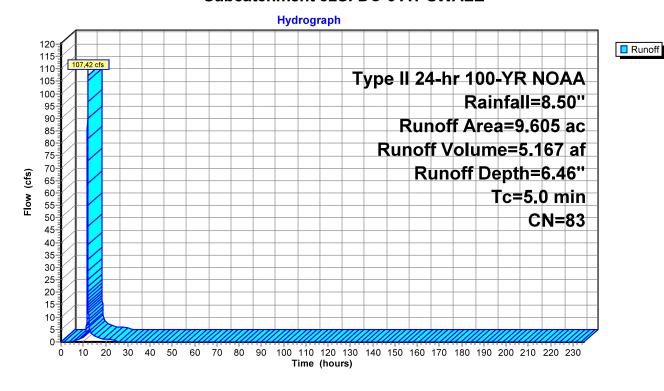
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Area (s	sf) CN	Description	Description				
8,29	98 3	Paved park	ing & roofs	S			
327,89	97 80	>75% Gras	s cover, Go	Good, HSG D			
336,19	90 80	Weighted A	Weighted Average				
327,89	97	Pervious Ar	rea				
8,29	93	Impervious	Area				
To Lon	ath Clar	no Volocity	Conneity	, Description			
Tc Len (min) (fe	gth Slo _l eet) (ft/		Capacity (cfs)	·			
	(11/	11) (11/560)	(615)				
5.0				Direct Entry,			

Subcatchment 51S: DC-5 AT SWALE

Printed 7/18/2020

Page 60


Summary for Subcatchment 52S: DC-6 AT SWALE

Runoff = 107.42 cfs @ 11.96 hrs, Volume= 5.167 af, Depth= 6.46"

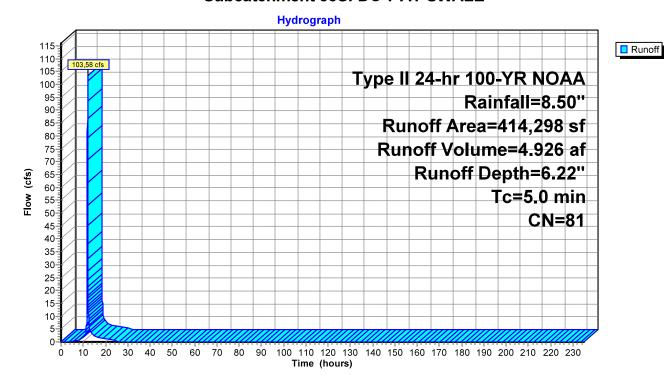
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Are	ea (ac)	CN	Desc	Description				
	1.339	98	Pave	ed parking	& roofs			
	8.266	80	>75%	% Grass co	over, Good	I, HSG D		
	9.605 83 Weighted Average							
	8.266 Pervious Area				_			
	1.339		Impe	ervious Are	ea			
T (mir	c Lenç	-	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.		<u> </u>	(1010)	(18000)	(0.0)	Direct Entry,		

Subcatchment 52S: DC-6 AT SWALE

Printed 7/18/2020

Page 61


Summary for Subcatchment 53S: DC-7 AT SWALE

Runoff = 103.58 cfs @ 11.96 hrs, Volume= 4.926 af, Depth= 6.22"

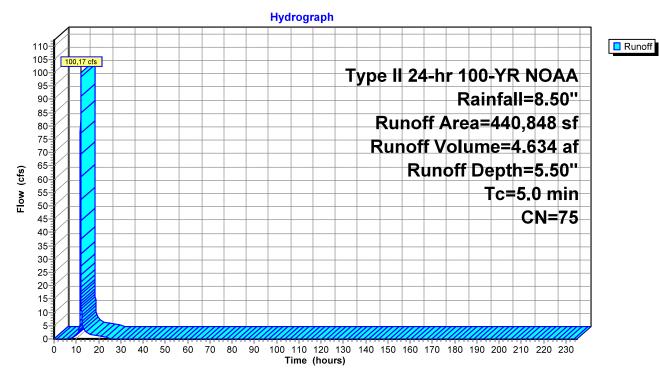
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Area	(sf) CN	Description	Description					
21,3	376 98	Paved park	ing & roofs	S				
392,9	922 80	>75% Gras	s cover, Go	lood, HSG D				
414,2	298 81	Weighted A	Weighted Average					
392,9	922	Pervious A	rea					
21,3	376	Impervious	Area					
	•	ppe Velocity c/ft) (ft/sec)	Capacity (cfs)	·				
5.0				Direct Entry,				

Subcatchment 53S: DC-7 AT SWALE

Printed 7/18/2020

Page 62


Summary for Subcatchment 54S: DC-8 AT SWALE

Runoff = 100.17 cfs @ 11.96 hrs, Volume= 4.634 af, Depth= 5.50"

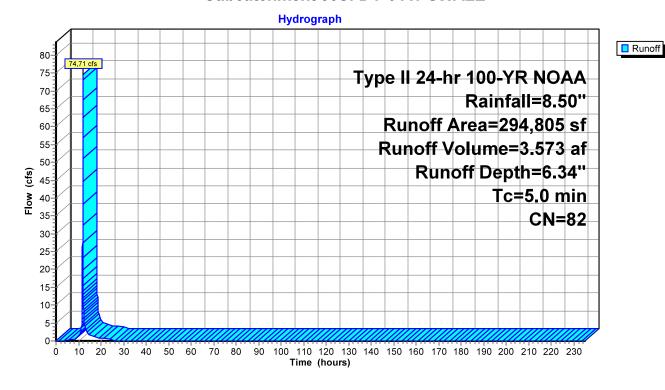
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Aı	rea (sf)	CN	Description				
	23,312	98	Paved park	ing & roofs	S		
4	17,536	74	>75% Gras	s cover, Go	lood, HSG C		
4	40,848	75	Weighted Average				
4	17,536		Pervious Ar	ea			
	23,312		Impervious	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	•		
5.0					Direct Entry,		

Subcatchment 54S: DC-8 AT SWALE

Printed 7/18/2020

Page 63


Summary for Subcatchment 55S: DC-9 AT SWALE

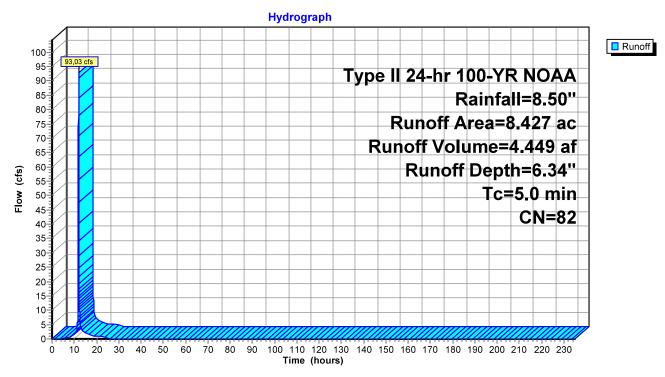
Runoff = 74.71 cfs @ 11.96 hrs, Volume= 3.573 af, Depth= 6.34"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

A	rea (sf)	CN	Description				
	29,366	98	Paved park	ing & roofs	S		
2	65,439	80	>75% Gras	s cover, Go	ood, HSG D		
2	94,805	82	Weighted Average				
2	65,439		Pervious Aı	ea			
	29,366		mpervious	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	·		
5.0					Direct Entry,		

Subcatchment 55S: DC-9 AT SWALE

<u>Page 64</u>


Summary for Subcatchment 56S: DC-10 AT SWALE

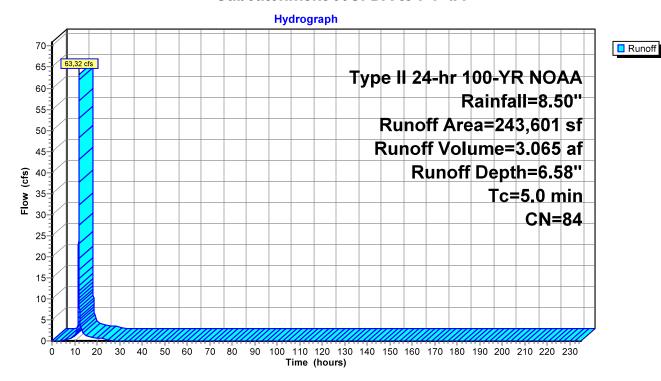
Runoff = 93.03 cfs @ 11.96 hrs, Volume= 4.449 af, Depth= 6.34"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Area	(ac)	CN	Desc	Description					
0	.707	98	Pave	d parking	& roofs				
7	.720	80	·						
8.427 82 Weighted Average					age				
7	.720		Perv	ious Area	_				
0	.707		Impe	rvious Are	ea				
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	•			
5.0	•	•				Direct Entry,			

Subcatchment 56S: DC-10 AT SWALE

Page 65


Summary for Subcatchment 69S: DA to PC 4A

Runoff = 63.32 cfs @ 11.96 hrs, Volume= 3.065 af, Depth= 6.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

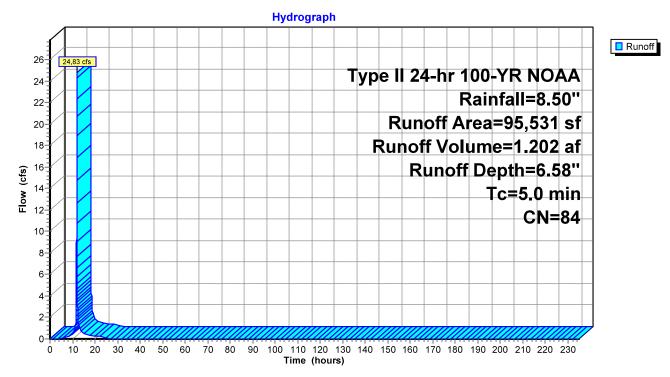
Are	a (sf)	CN	Description					
5	3,337	98	Paved parking & roofs					
190	0,264	80	>75% Grass cover, Good, HSG D					
243	3,601	84	Weighted A	verage				
190	0,264		Pervious Aı	ea				
5	3,337		Impervious	Area				
Tc l (min)	_ength (feet)	Slope (ft/ft)	,	Capacity (cfs)	·			
5.0					Direct Entry,			

Subcatchment 69S: DA to PC 4A

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 66


Summary for Subcatchment 70S: PC 3A

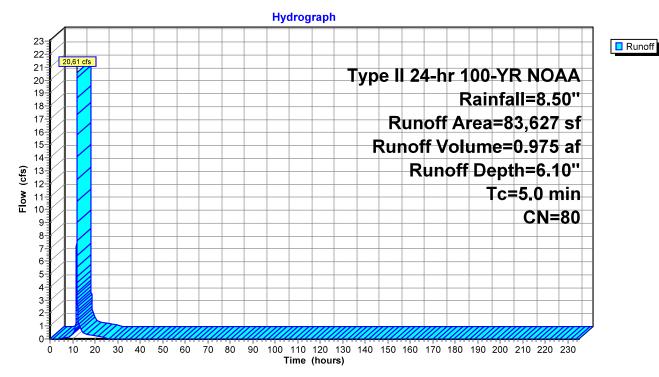
Runoff = 24.83 cfs @ 11.96 hrs, Volume= 1.202 af, Depth= 6.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Ar	rea (sf)	CN	Description						
	20,880	98	Paved parking & roofs						
	74,651	80	>75% Grass cover, Good, HSG D						
!	95,531	84	Weighted A	verage					
,	74,651		Pervious Aı	rea					
	20,880		Impervious	Area					
_									
Tc	Length	Slope	,	Capacity	·				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.0					Direct Entry,				

Subcatchment 70S: PC 3A

Page 67


Summary for Subcatchment 93S: CAP ROAD to DC2

Runoff = 20.61 cfs @ 11.96 hrs, Volume= 0.975 af, Depth= 6.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

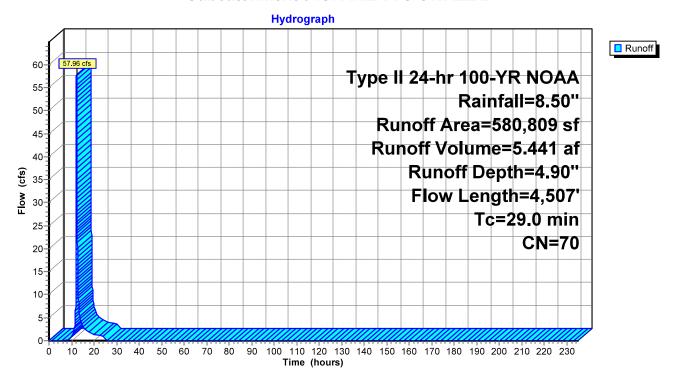
	Α	rea (sf)	CN	Description					
*		63,066	74	FROM APPROVED CALCS					
		20,561	98	Paved roads w/curbs & sewers					
		83,627	80	Weighted A	verage				
		63,066		Pervious Ai	rea				
		20,561		Impervious	Area				
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	•			
	5.0					Direct Entry,			

Subcatchment 93S: CAP ROAD to DC2

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 68

Summary for Subcatchment 94S: AREA TO SWALE 2


Runoff = 57.96 cfs @ 12.22 hrs, Volume= 5.441 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Αı	rea (sf)	CN [Description						
-		23,760	30 \	Woods, Go	od, HSG A					
		29,120	70 \	Woods, Go	od, HSG C					
*	1	13,835	61 >	>75% Gras	s cover, Go	cover, Good, HSG B (ONSITE A)				
*	2	72,732	80 >	75% Gras	s cover, Go	ood, HSG D (ONSITE C)				
*		12,155	80 >	>75% Grass cover, Good, HSG D (ONSITE D)						
		33,629	30 \	Woods, Go	od, HSG A					
		31,887			od, HSG D					
*		63,691	76 F	RA ZONINO	G C SOILS					
	5	80,809	70 \	Neighted A	verage					
	5	80,809	F	Pervious Area						
	Тс	Length	Slope	•	Capacity	Description				
(min)	/E 1\								
	min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.8	(feet) 100	0.0500	(ft/sec) 0.25	(cfs)	Sheet Flow, A-B				
	6.8	100	0.0500	0.25	(cfs)	Grass: Short n= 0.150 P2= 3.20"				
					(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C				
	6.8 0.6	100 120	0.0500 0.0400	0.25 3.22	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps				
	6.8	100	0.0500	0.25	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D				
	6.8 0.6 0.1	100 120 27	0.0500 0.0400 0.3000	0.25 3.22 8.82	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps				
	6.8 0.6	100 120	0.0500 0.0400	0.25 3.22	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E				
	6.8 0.6 0.1 1.5	100 120 27 250	0.0500 0.0400 0.3000 0.0300	0.25 3.22 8.82 2.79		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps				
	6.8 0.6 0.1	100 120 27	0.0500 0.0400 0.3000	0.25 3.22 8.82	(cfs)	Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, F-G				
	6.8 0.6 0.1 1.5	100 120 27 250	0.0500 0.0400 0.3000 0.0300	0.25 3.22 8.82 2.79		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, F-G Bot.W=5.00' D=0.50' Z= 2.0 '/' Top.W=7.00'				
	6.8 0.6 0.1 1.5	100 120 27 250	0.0500 0.0400 0.3000 0.0300	0.25 3.22 8.82 2.79		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, F-G				

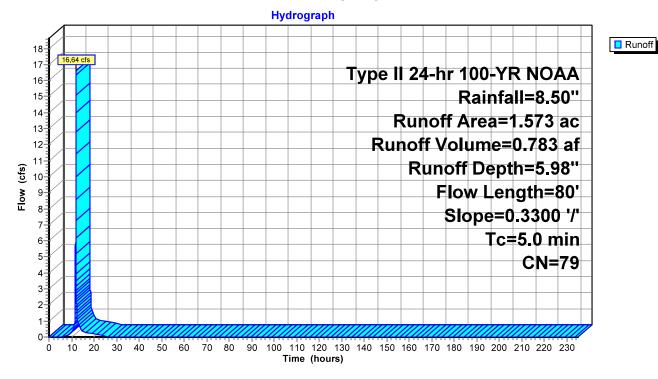
Page 69

Subcatchment 94S: AREA TO SWALE 2

Prepared by {enter your company name here} HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 70

Summary for Subcatchment 95S: Upslope Area of PC3D


Runoff 16.64 cfs @ 11.96 hrs, Volume= 0.783 af, Depth= 5.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area ((ac)	CN	Desc	Description						
	1.	240	74	>75%	75% Grass cover, Good, HSG C						
	0.	333	98	Pave	ed parking	& roofs					
	1.573 79 Weighted Average										
	1.:	240		Perv	ious Area	_					
	0.	333		Impe	ervious Are	ea					
	_			-							
	Tc	Length		lope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	2.7	80	0.3	300	0.50		Sheet Flow, PErimeter Berm				
							Grass: Short n= 0.150 P2= 3.20"				
	2.7 80 Total, Increased to minimum Tc = 5.0 min										

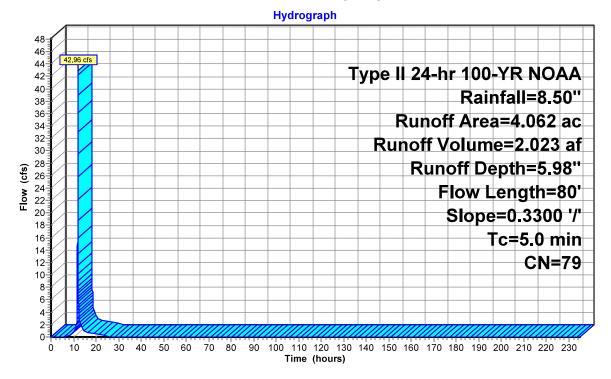
Total, Increased to minimum Tc = 5.0 min

Subcatchment 95S: Upslope Area of PC3D

Page 71

Runoff

Summary for Subcatchment 96S: Upslope Area of PC3E


Runoff 42.96 cfs @ 11.96 hrs, Volume= 2.023 af, Depth= 5.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area	(ac)	CN	Desc	Description					
	3.	265	74	>75%	75% Grass cover, Good, HSG C					
_	0.	797	98	Pave	ed parking	& roofs				
	4.	062	79	Weig	ghted Aver	age				
	3.	265		Perv	ious Area					
	0.	797		Impe	ervious Are	ea				
	Tc	Lengtl		Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	2.7	8	0.	3300	0.50		Sheet Flow, Perimeter Berm			
							Grass: Short n= 0.150 P2= 3.20"			
2.7 80 Total, Increased to minimum Tc = 5.0 min						Tc = 5.0 min				

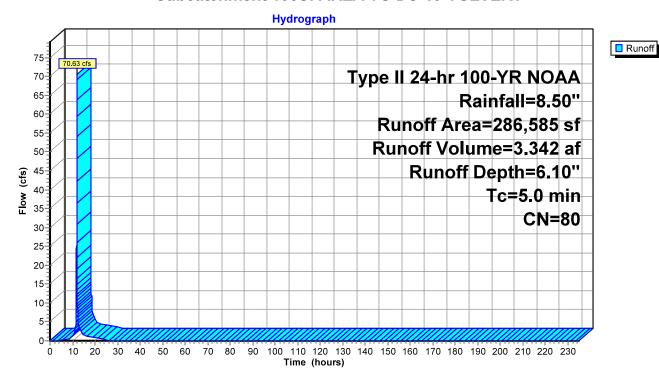
Total, Increased to minimum Tc = 5.0 min

Subcatchment 96S: Upslope Area of PC3E

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 72


Summary for Subcatchment 106S: AREA TO DS-10 CULVERT

Runoff = 70.63 cfs @ 11.96 hrs, Volume= 3.342 af, Depth= 6.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

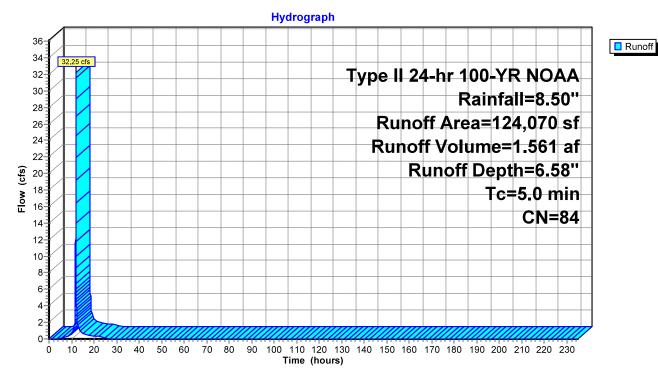
A	rea (sf)	CN E	Description						
2	286,585	80 >	75% Gras	s cover, Go	ood, HSG D				
	286,585	585 Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				

Subcatchment 106S: AREA TO DS-10 CULVERT

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 73


Summary for Subcatchment 107S: DA TO PC 5

Runoff = 32.25 cfs @ 11.96 hrs, Volume= 1.561 af, Depth= 6.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Α	rea (sf)	CN	Description					
*		27,657	98	PERIMETER ROAD					
		96,413	80	>75% Grass cover, Good, HSG D					
	1	24,070	84	Weighted A	verage				
	96,413 Pervious Area								
	27,657 Impervious Area			mpervious	Area				
	Tc	Length	Slope	•	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.0					Direct Entry,			

Subcatchment 107S: DA TO PC 5

PC AND DOWNCHUTES_07152020

Prepared by {enter your company name here}

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

<u>Page 74</u>

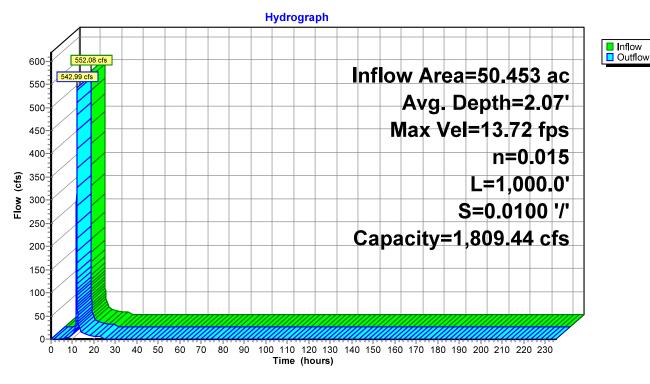
Summary for Reach 89R: PC 4G

Inflow Area = 50.453 ac, 9.47% Impervious, Inflow Depth = 6.28" for 100-YR NOAA event

Inflow = 552.08 cfs @ 11.96 hrs, Volume= 26.400 af

Outflow = 542.99 cfs @ 11.97 hrs, Volume= 26.400 af, Atten= 2%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 13.72 fps, Min. Travel Time= 1.2 min Avg. Velocity = 2.87 fps, Avg. Travel Time= 5.8 min

Peak Storage= 39,550 cf @ 11.97 hrs, Average Depth at Peak Storage= 2.07' Bank-Full Depth= 4.00', Capacity at Bank-Full= 1,809.44 cfs

15.00' x 4.00' deep channel, n= 0.015 Side Slope Z-value= 2.0 '/' Top Width= 31.00' Length= 1,000.0' Slope= 0.0100 '/' Inlet Invert= 90.00', Outlet Invert= 80.00'

Reach 89R: PC 4G

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 75

Inflow Outflow

Summary for Reach 95R: DC-1

Inflow Area = 8.371 ac, 21.28% Impervious, Inflow Depth = 6.58" for 100-YR NOAA event

Inflow 94.79 cfs @ 11.96 hrs, Volume= 4.587 af

Outflow 94.16 cfs @ 11.97 hrs, Volume= 4.587 af, Atten= 1%, Lag= 0.5 min

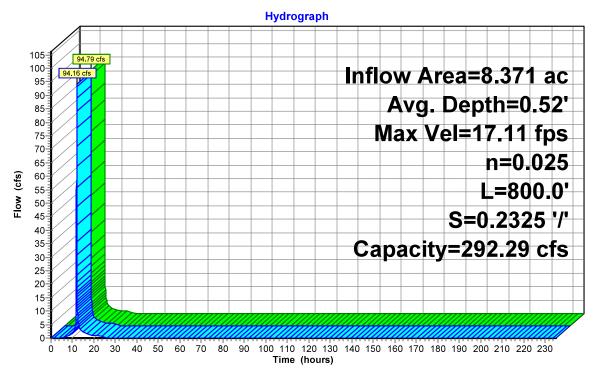
Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Max. Velocity= 17.11 fps, Min. Travel Time= 0.8 min Avg. Velocity = 3.41 fps, Avg. Travel Time= 3.9 min

Peak Storage= 4,400 cf @ 11.97 hrs, Average Depth at Peak Storage= 0.52'

Bank-Full Depth= 1.00', Capacity at Bank-Full= 292.29 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 2.0 '/' Top Width= 13.60'

Length= 800.0' Slope= 0.2325 '/'

Inlet Invert= 264.00', Outlet Invert= 78.00'

Reach 95R: DC-1

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 76

Inflow Outflow

Summary for Reach 96R: DC-2

Inflow Area = 9.699 ac, 13.72% Impervious, Inflow Depth = 6.29" for 100-YR NOAA event

Inflow 106.49 cfs @ 11.96 hrs, Volume= 5.082 af

Outflow 106.14 cfs @ 11.96 hrs, Volume= 5.082 af, Atten= 0%, Lag= 0.3 min

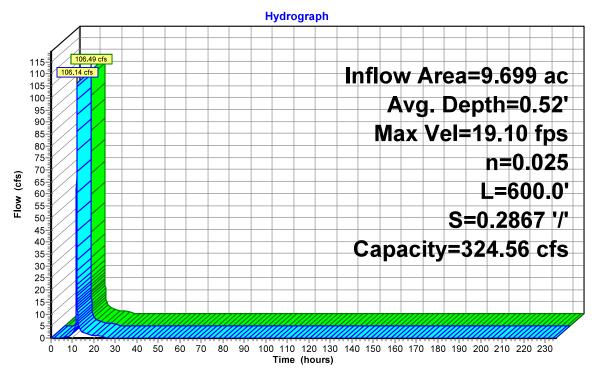
Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Max. Velocity= 19.10 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.85 fps, Avg. Travel Time= 2.6 min

Peak Storage= 3,332 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.52'

Bank-Full Depth= 1.00', Capacity at Bank-Full= 324.56 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 2.0 '/' Top Width= 13.60'

Length= 600.0' Slope= 0.2867 '/'

Inlet Invert= 264.00', Outlet Invert= 92.00'

Reach 96R: DC-2

PC AND DOWNCHUTES_07152020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 77

Inflow
Outflow

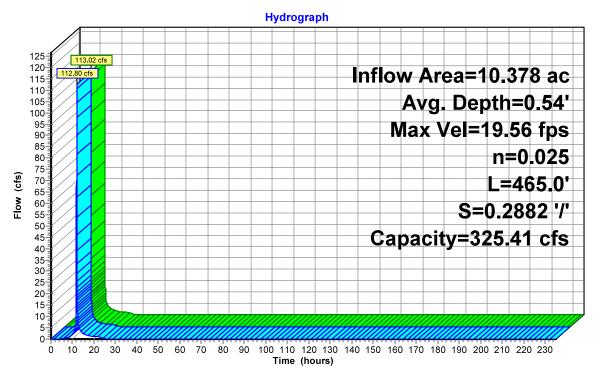
Summary for Reach 97R: DC-3

Inflow Area = 10.378 ac, 4.90% Impervious, Inflow Depth = 6.22" for 100-YR NOAA event

Inflow = 113.02 cfs @ 11.96 hrs, Volume= 5.375 af

Outflow = 112.80 cfs @ 11.96 hrs, Volume= 5.375 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 19.56 fps, Min. Travel Time= 0.4 min Avg. Velocity = 3.99 fps, Avg. Travel Time= 1.9 min

Peak Storage= 2,681 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00', Capacity at Bank-Full= 325.41 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 465.0' Slope= 0.2882 '/' Inlet Invert= 264.00', Outlet Invert= 130.00'

‡

Reach 97R: DC-3

PC AND DOWNCHUTES_07152020

Prepared by {enter your company name here}

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 78

Inflow
Outflow

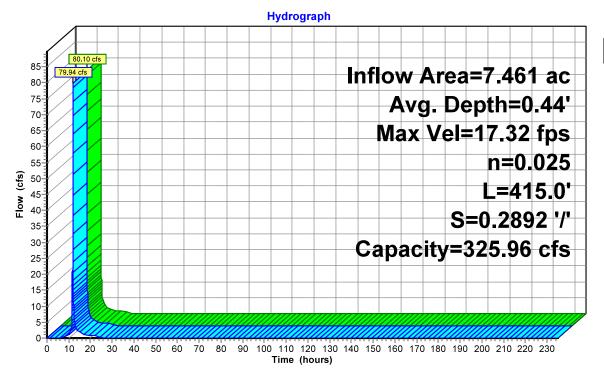
Summary for Reach 98R: DC-4

Inflow Area = 7.461 ac, 2.45% Impervious, Inflow Depth = 6.10" for 100-YR NOAA event

Inflow = 80.10 cfs @ 11.96 hrs, Volume= 3.790 af

Outflow = 79.94 cfs @ 11.96 hrs, Volume= 3.790 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 17.32 fps, Min. Travel Time= 0.4 min Avg. Velocity = 3.53 fps, Avg. Travel Time= 2.0 min

Peak Storage= 1,915 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.00', Capacity at Bank-Full= 325.96 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 415.0' Slope= 0.2892 '/' Inlet Invert= 264.00', Outlet Invert= 144.00'

‡

Reach 98R: DC-4

PC AND DOWNCHUTES 07152020

Prepared by {enter your company name here}

Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

<u>Page 79</u>

Inflow
Outflow

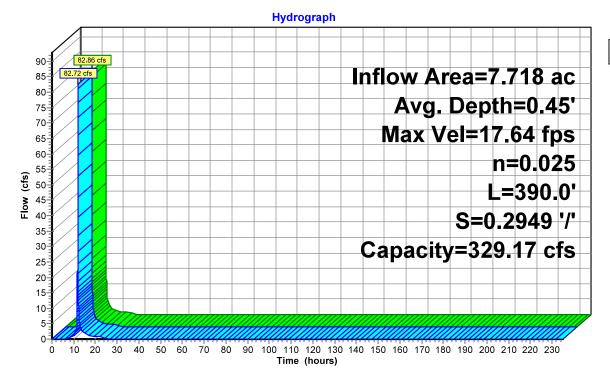
Summary for Reach 99R: DC-5

Inflow Area = 7.718 ac, 2.47% Impervious, Inflow Depth = 6.10" for 100-YR NOAA event

Inflow = 82.86 cfs @ 11.96 hrs, Volume= 3.920 af

Outflow = 82.72 cfs @ 11.96 hrs, Volume= 3.920 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 17.64 fps, Min. Travel Time= 0.4 min Avg. Velocity = 3.60 fps, Avg. Travel Time= 1.8 min

Peak Storage= 1,828 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.45' Bank-Full Depth= 1.00', Capacity at Bank-Full= 329.17 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 390.0' Slope= 0.2949 '/' Inlet Invert= 264.00', Outlet Invert= 149.00'

‡

Reach 99R: DC-5

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 80

Inflow

Outflow

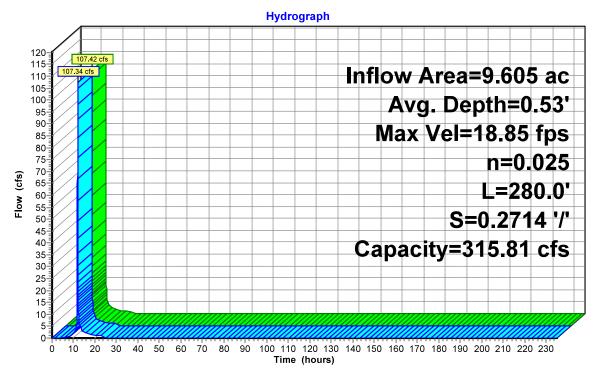
Summary for Reach 100R: DC-6

Inflow Area = 9.605 ac, 13.94% Impervious, Inflow Depth = 6.46" for 100-YR NOAA event

Inflow = 107.42 cfs @ 11.96 hrs, Volume= 5.167 af

Outflow = 107.34 cfs @ 11.96 hrs, Volume= 5.167 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 18.85 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.85 fps, Avg. Travel Time= 1.2 min

Peak Storage= 1,594 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.53' Bank-Full Depth= 1.00', Capacity at Bank-Full= 315.81 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 280.0' Slope= 0.2714 '/' Inlet Invert= 230.00', Outlet Invert= 154.00'

‡

Reach 100R: DC-6

Page 81

Inflow Outflow

Summary for Reach 101R: DC-7

Inflow Area = 9.511 ac, 5.16% Impervious, Inflow Depth = 6.22" for 100-YR NOAA event

Inflow 103.58 cfs @ 11.96 hrs, Volume= 4.926 af

Outflow 103.42 cfs @ 11.96 hrs, Volume= 4.926 af, Atten= 0%, Lag= 0.2 min

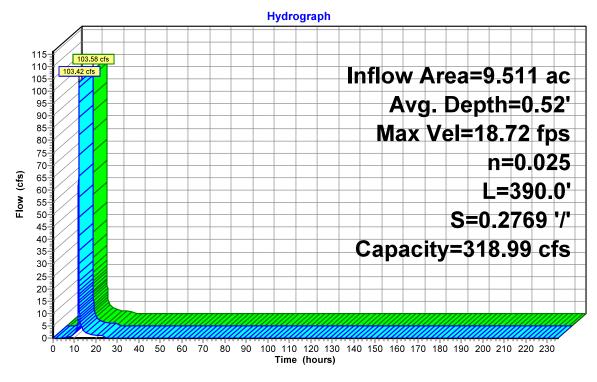
Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Max. Velocity= 18.72 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.82 fps, Avg. Travel Time= 1.7 min

Peak Storage= 2,154 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.52'

Bank-Full Depth= 1.00', Capacity at Bank-Full= 318.99 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 2.0 '/' Top Width= 13.60'

Length= 390.0' Slope= 0.2769 '/'

Inlet Invert= 266.00', Outlet Invert= 158.00'

‡

Reach 101R: DC-7

Page 82

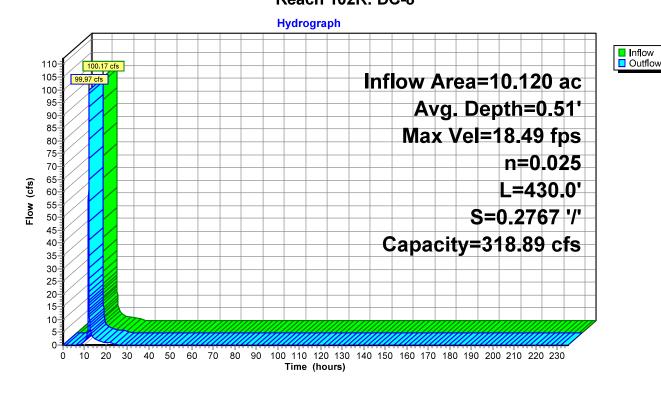
Summary for Reach 102R: DC-8

Inflow Area = 10.120 ac, 5.29% Impervious, Inflow Depth = 5.50" for 100-YR NOAA event

Inflow = 100.17 cfs @ 11.96 hrs, Volume= 4.634 af

Outflow = 99.97 cfs @ 11.96 hrs, Volume= 4.634 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 18.49 fps, Min. Travel Time= 0.4 min Avg. Velocity = 3.84 fps, Avg. Travel Time= 1.9 min

Peak Storage= 2,324 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.51' Bank-Full Depth= 1.00', Capacity at Bank-Full= 318.89 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 430.0' Slope= 0.2767 '/' Inlet Invert= 262.00', Outlet Invert= 143.00'

Reach 102R: DC-8

‡

PC AND DOWNCHUTES_07152020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 83

Inflow

Summary for Reach 103R: DC-9

Inflow Area = 6.768 ac, 9.96% Impervious, Inflow Depth = 6.34" for 100-YR NOAA event

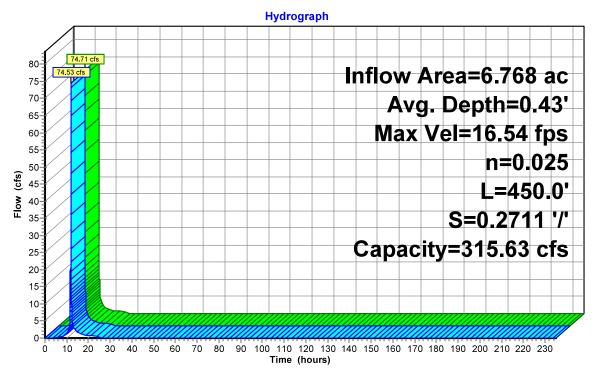
Inflow = 74.71 cfs @ 11.96 hrs, Volume= 3.573 af

Outflow = 74.53 cfs @ 11.96 hrs, Volume= 3.573 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Max. Velocity= 16.54 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.35 fps, Avg. Travel Time= 2.2 min

Peak Storage= 2,027 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00', Capacity at Bank-Full= 315.63 cfs


9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 'I' Top Width= 13.60'

Length= 450.0' Slope= 0.2711 '/'

Inlet Invert= 252.00', Outlet Invert= 130.00'

Reach 103R: DC-9

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 84

Inflow
Outflow

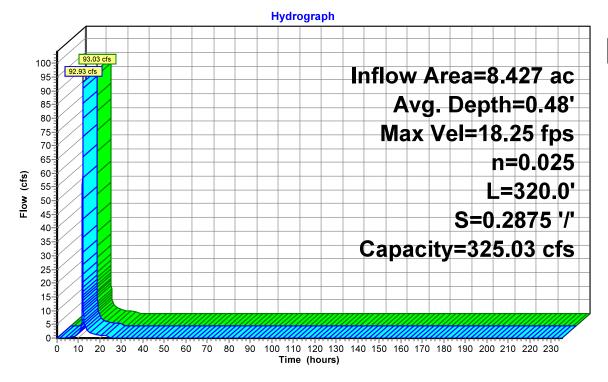
Summary for Reach 104R: DC-10

Inflow Area = 8.427 ac, 8.39% Impervious, Inflow Depth = 6.34" for 100-YR NOAA event

Inflow = 93.03 cfs @ 11.96 hrs, Volume= 4.449 af

Outflow = 92.93 cfs @ 11.96 hrs, Volume= 4.449 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs


Max. Velocity= 18.25 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.72 fps, Avg. Travel Time= 1.4 min

Peak Storage= 1,630 cf @ 11.96 hrs, Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00', Capacity at Bank-Full= 325.03 cfs

9.60' x 1.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.60' Length= 320.0' Slope= 0.2875 '/' Inlet Invert= 210.00', Outlet Invert= 118.00'

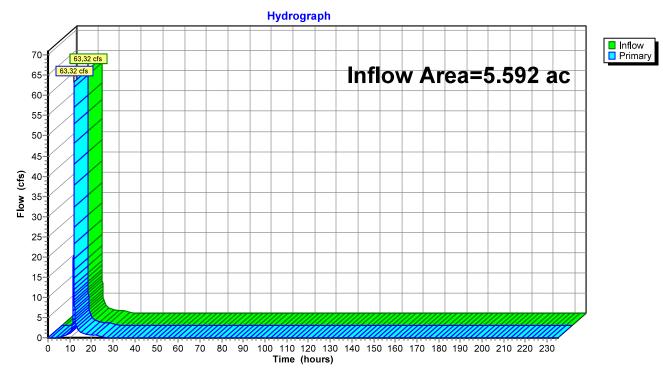
‡

Reach 104R: DC-10

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 85

Summary for Link 57L: PC 4A


Inflow Area = 5.592 ac, 21.90% Impervious, Inflow Depth = 6.58" for 100-YR NOAA event

Inflow 3.065 af

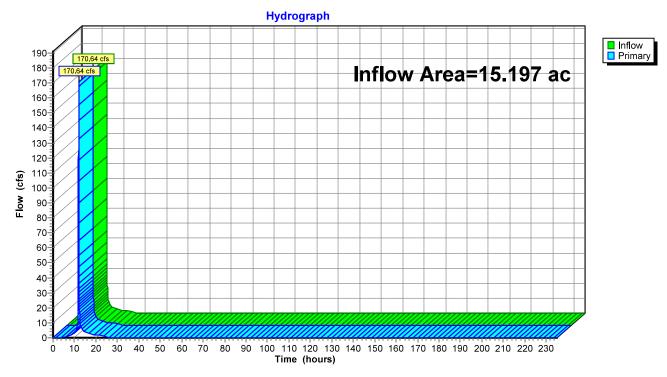
63.32 cfs @ 11.96 hrs, Volume= 63.32 cfs @ 11.96 hrs, Volume= 3.065 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 57L: PC 4A

Page 86

Summary for Link 58L: PC 4B


Inflow Area = 15.197 ac, 16.87% Impervious, Inflow Depth = 6.50" for 100-YR NOAA event

Inflow = 170.64 cfs @ 11.96 hrs, Volume= 8.232 af

Primary = 170.64 cfs @ 11.96 hrs, Volume= 8.232 af, Atten= 0%, Lag= 0.0 min

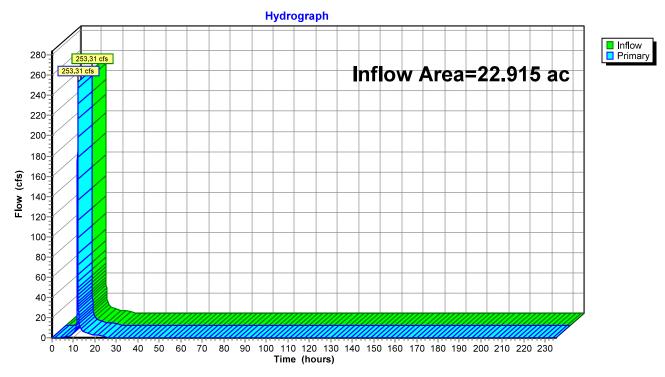
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 58L: PC 4B

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 87

Summary for Link 59L: PC 4C


Inflow Area = 22.915 ac, 12.02% Impervious, Inflow Depth = 6.36" for 100-YR NOAA event

Inflow = 253.31 cfs @ 11.96 hrs, Volume= 12.152 af

Primary = 253.31 cfs @ 11.96 hrs, Volume= 12.152 af, Atten= 0%, Lag= 0.0 min

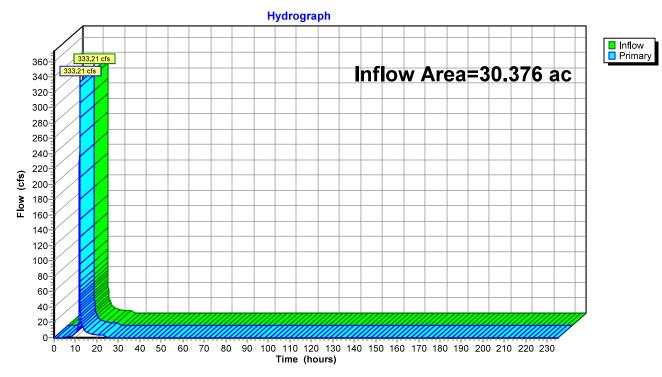
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 59L: PC 4C

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 88

Summary for Link 60L: PC 4D


Inflow Area = 30.376 ac, 9.67% Impervious, Inflow Depth = 6.30" for 100-YR NOAA event

Inflow = 333.21 cfs @ 11.96 hrs, Volume= 15.942 af

Primary = 333.21 cfs @ 11.96 hrs, Volume= 15.942 af, Atten= 0%, Lag= 0.0 min

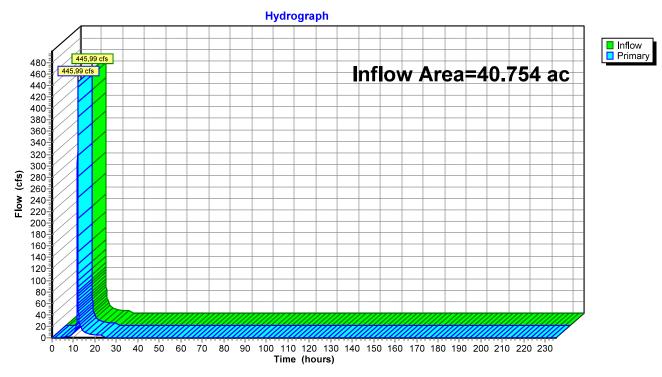
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 60L: PC 4D

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 89

Summary for Link 61L: PC 4E


Inflow Area = 40.754 ac, 8.45% Impervious, Inflow Depth = 6.28" for 100-YR NOAA event

Inflow = 445.99 cfs @ 11.96 hrs, Volume= 21.317 af

Primary = 445.99 cfs @ 11.96 hrs, Volume= 21.317 af, Atten= 0%, Lag= 0.0 min

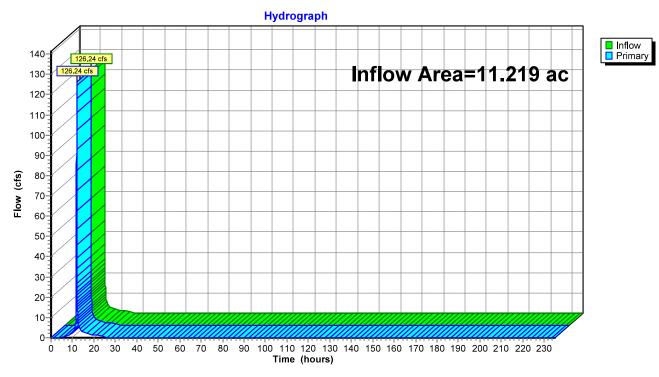
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 61L: PC 4E

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 90

Summary for Link 62L: PC 5


Inflow Area = 11.219 ac, 21.53% Impervious, Inflow Depth = 6.58" for 100-YR NOAA event

Inflow 6.148 af

126.24 cfs @ 11.96 hrs, Volume= 126.24 cfs @ 11.96 hrs, Volume= 6.148 af, Atten= 0%, Lag= 0.0 min Primary

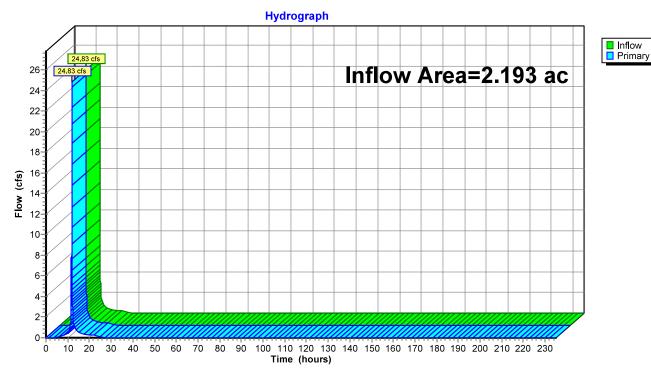
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 62L: PC 5

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 91

Summary for Link 63L: PC 3A


Inflow Area = 2.193 ac, 21.86% Impervious, Inflow Depth = 6.58" for 100-YR NOAA event

Inflow

24.83 cfs @ 11.96 hrs, Volume= 1.202 af 24.83 cfs @ 11.96 hrs, Volume= 1.202 af, 1.202 af, Atten= 0%, Lag= 0.0 min Primary

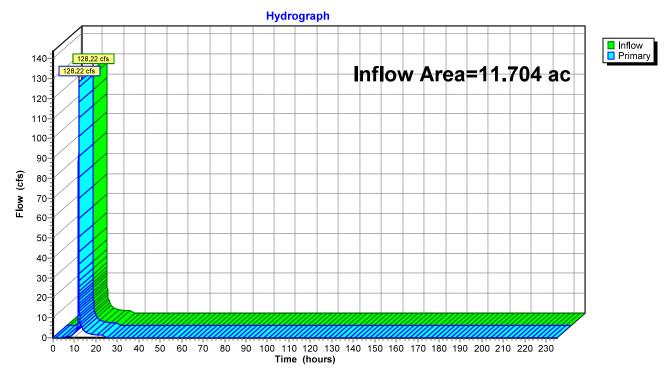
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 63L: PC 3A

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 92

Summary for Link 64L: PC 3B


Inflow Area = 11.704 ac, 8.29% Impervious, Inflow Depth = 6.28" for 100-YR NOAA event

Inflow = 128.22 cfs @ 11.96 hrs, Volume= 6.128 af

Primary = 128.22 cfs @ 11.96 hrs, Volume= 6.128 af, Atten= 0%, Lag= 0.0 min

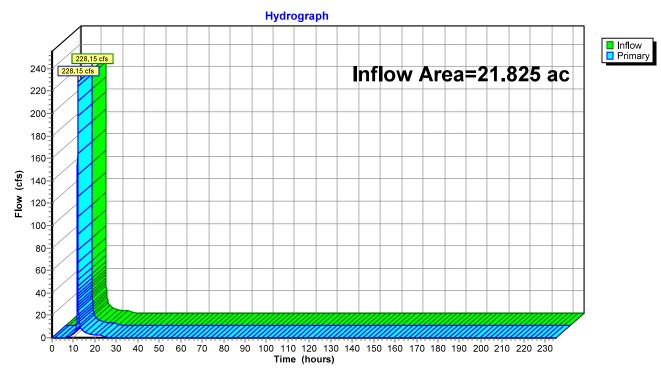
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 64L: PC 3B

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 93

Summary for Link 65L: PC 3C


Inflow Area = 21.825 ac, 6.90% Impervious, Inflow Depth = 5.92" for 100-YR NOAA event

Inflow = 228.15 cfs @ 11.96 hrs, Volume= 10.762 af

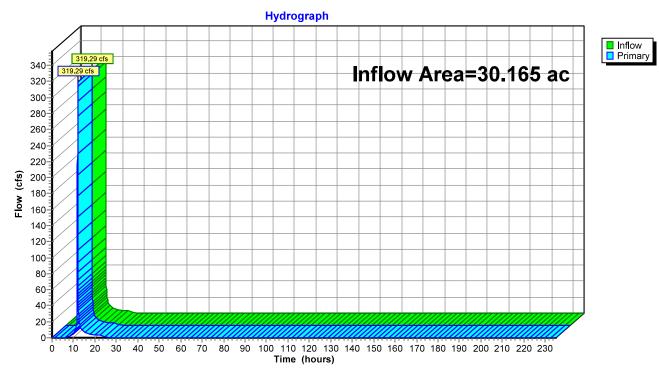
Primary = 228.15 cfs @ 11.96 hrs, Volume= 10.762 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 65L: PC 3C

Page 94

Summary for Link 66L: PC 3D


Inflow Area = 30.165 ac, 8.33% Impervious, Inflow Depth = 6.01" for 100-YR NOAA event

Inflow = 319.29 cfs @ 11.96 hrs, Volume= 15.119 af

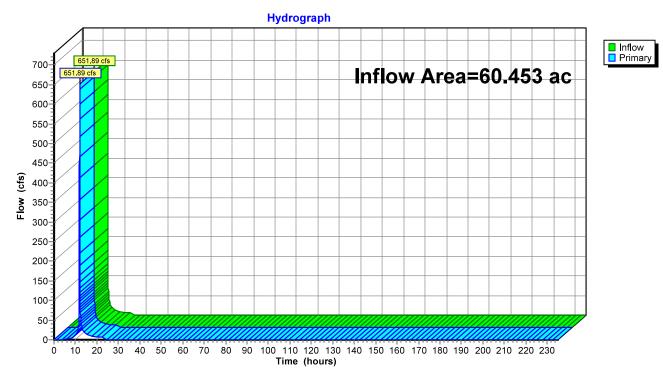
Primary = 319.29 cfs @ 11.96 hrs, Volume= 15.119 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 66L: PC 3D

Page 95

Summary for Link 67L: CROSS PIPE


Inflow Area = 60.453 ac, 10.64% Impervious, Inflow Depth = 6.17" for 100-YR NOAA event

Inflow = 651.89 cfs @ 11.96 hrs, Volume= 31.081 af

Primary = 651.89 cfs @ 11.96 hrs, Volume= 31.081 af, Atten= 0%, Lag= 0.0 min

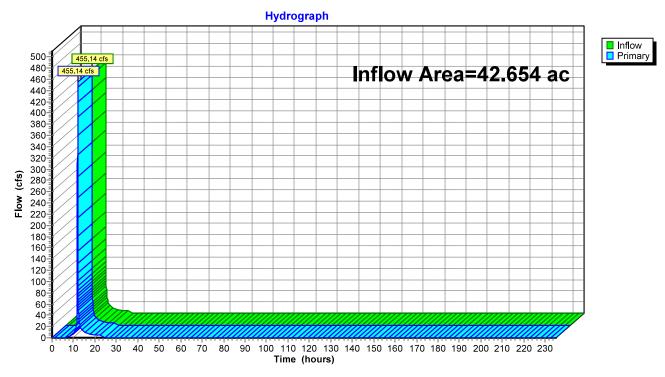
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 67L: CROSS PIPE

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 96

Summary for Link 68L: PC 3E


Inflow Area = 42.654 ac, 9.42% Impervious, Inflow Depth = 6.07" for 100-YR NOAA event

Inflow = 455.14 cfs @ 11.96 hrs, Volume= 21.591 af

Primary = 455.14 cfs @ 11.96 hrs, Volume= 21.591 af, Atten= 0%, Lag= 0.0 min

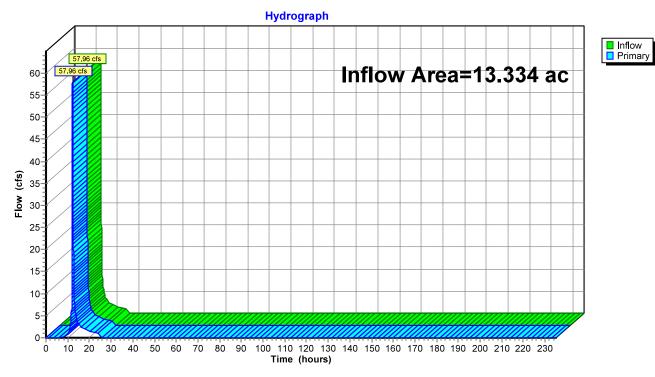
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 68L: PC 3E

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 97

Summary for Link 86L: PC 2


Inflow Area = 13.334 ac, 0.00% Impervious, Inflow Depth = 4.90" for 100-YR NOAA event

Inflow = 57.96 cfs @ 12.22 hrs, Volume= 5.441 af

Primary = 57.96 cfs @ 12.22 hrs, Volume= 5.441 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 86L: PC 2

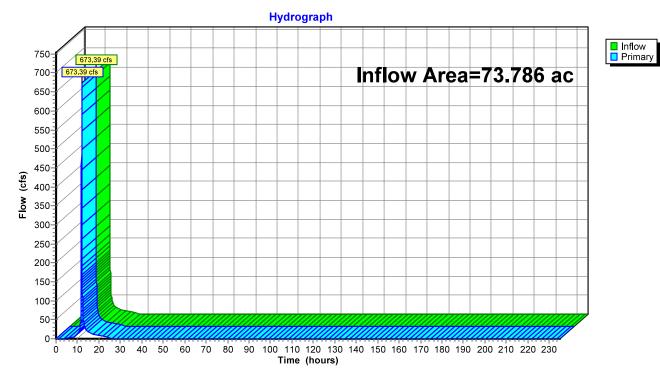
PC AND DOWNCHUTES_07152020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 98

Summary for Link 87L: TO BASIN 1


Inflow Area = 73.786 ac, 8.72% Impervious, Inflow Depth = 5.94" for 100-YR NOAA event

Inflow = 673.39 cfs @ 11.96 hrs, Volume= 36.522 af

Primary = 673.39 cfs @ 11.96 hrs, Volume= 36.522 af, Atten= 0%, Lag= 0.0 min

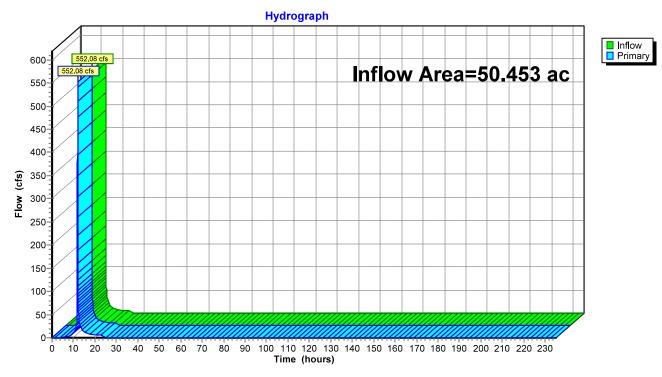
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 87L: TO BASIN 1

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 99

Summary for Link 88L: PC 4F


Inflow Area = 50.453 ac, 9.47% Impervious, Inflow Depth = 6.28" for 100-YR NOAA event

Inflow = 552.08 cfs @ 11.96 hrs, Volume= 26.400 af

Primary = 552.08 cfs @ 11.96 hrs, Volume= 26.400 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 88L: PC 4F

Leachate Storage Facility No. 1

Based on routing calculations 92S and 87S do not combine. 92S flows into PC-4F through Culvert #6. Proposed channel flow calculations Attachment 17D have been modified to include additional flow. These calculations for Leachate Storage Tank Facility #1 have not been revised because they will actually have less flow than calcualted and can be considered conservative. AREA TO SWALE 1 85S DRAINAGE AREA TO SWALE 10 85L DRAINAGE AREA TO SWALE 7 SWALE 1 DRAINAGE AREA TO 84L **SWALE 6** SWALE 10 Revised by PGS 08/21/2021 Drainage Diagram for PC AND DOWNCHUTES_07152020 Subcat Reach Pond Link Prepared by {enter your company name here}, Printed 7/18/2020

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 2

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
5.485	30	Woods, Good, HSG A (92S)
4.665	30	Woods, Good, HSG A (ONSITE) (87S)
19.521	42	RA ZONING A SOILS (87S,92S)
5.191	61	>75% Grass cover, Good, HSG B (ONSITE A) (87S,92S)
2.514	64	RA ZONING B SOILS (87S,92S)
1.808	70	Woods, Good, HSG C (92S)
1.272	70	Woods, Good, HSG C (ONSITE) (87S)
5.791	76	RA ZONING C SOILS (87S,92S)
0.611	77	Woods, Good, HSG D (92S)
0.018	77	Woods, Good, HSG D (ONSITE) (87S)
2.595	80	>75% Grass cover, Good, HSG D (84S,85S)
4.270	80	>75% Grass cover, Good, HSG D (ONSITE C) (87S,92S)
1.650	80	>75% Grass cover, Good, HSG D (ONSITE D) (92S)
1.846	82	RA ZONING D SOILS (87S,92S)
0.108	98	Paved parking & roofs (87S)
1.037	98	Paved roads w/curbs & sewers (84S,85S)
58.383		TOTAL AREA

PC AND DOWNCHUTES_07152020
Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 3

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Goup	Numbers
10.150	HSG A	87S, 92S
5.191	HSG B	87S, 92S
3.080	HSG C	87S, 92S
9.145	HSG D	84S, 85S, 87S, 92S
30.817	Other	84S, 85S, 87S, 92S
58.383		TOTAL AREA

PC AND DOWNCHUTES 07152020

Type II 24-hr 25-YR Rainfall=5.90" Printed 7/18/2020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 84S: DRAINAGE AREA TO Runoff Area=101,792 sf 25.93% Impervious Runoff Depth=4.21"

Tc=5.0 min CN=85 Runoff=17.34 cfs 0.819 af

Subcatchment 85S: DRAINAGE AREA TO Runoff Area=56,453 sf 33.28% Impervious Runoff Depth=4.31"

Tc=5.0 min CN=86 Runoff=9.80 cfs 0.466 af

Subcatchment 87S: DRAINAGE AREA TO Runoff Area=952,570 sf 0.49% Impervious Runoff Depth=1.09" Tc=16.3 min CN=50 Runoff=24.00 cfs 1.994 af

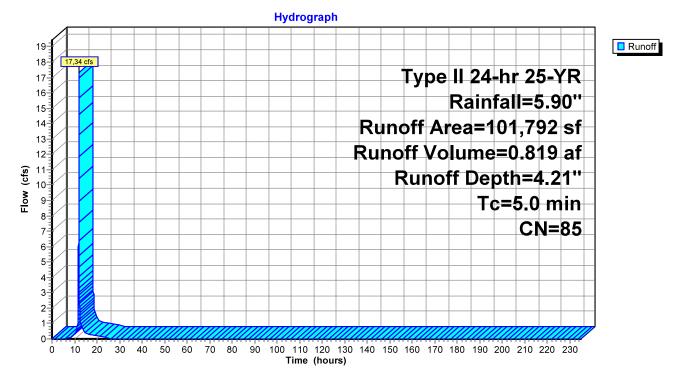
Subcatchment 92S: AREA TO SWALE 1 Runoff Area=1,432,342 sf 0.00% Impervious Runoff Depth=1.54" Tc=24.7 min CN=56 Runoff=44.00 cfs 4.213 af

Link 84L: SWALE 10 Inflow=68.46 cfs 7.493 af

Primary=68.46 cfs 7.493 af

Link 85L: SWALE 1Inflow=64.62 cfs 6.207 af
Primary=64.62 cfs 6.207 af

Total Runoff Area = 58.383 ac Runoff Volume = 7.493 af Average Runoff Depth = 1.54" 98.04% Pervious = 57.238 ac 1.96% Impervious = 1.145 ac

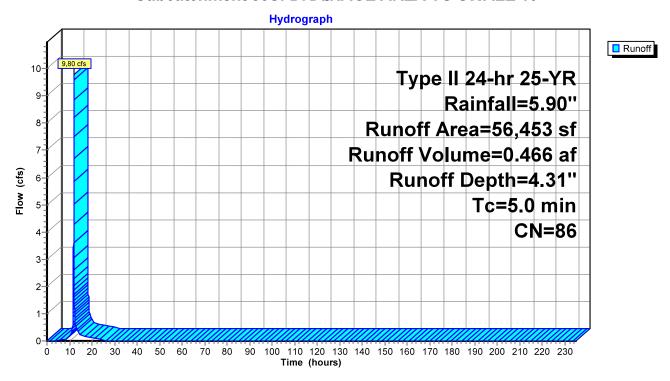

Summary for Subcatchment 84S: DRAINAGE AREA TO SWALE 7

Runoff = 17.34 cfs @ 11.96 hrs, Volume= 0.819 af, Depth= 4.21"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Are	ea (sf)	CN	Description		
7	5,393	80	>75% Gras	s cover, Go	ood, HSG D
2	6,399	98	Paved road	s w/curbs 8	& sewers
10	1,792	85	Neighted A	verage	
7	5,393		Pervious Ar	ea	
2	6,399		mpervious	Area	
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	·
5.0					Direct Entry,

Subcatchment 84S: DRAINAGE AREA TO SWALE 7


Summary for Subcatchment 85S: DRAINAGE AREA TO SWALE 10

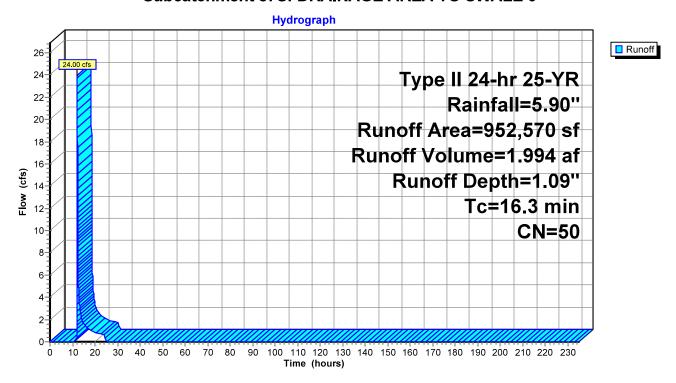
Runoff = 9.80 cfs @ 11.96 hrs, Volume= 0.466 af, Depth= 4.31"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Are	ea (sf)	CN	Description				
3	37,666	80	>75% Gras	s cover, Go	ood, HSG D		
1	8,787	98	Paved road	s w/curbs &	k sewers		
5	6,453	86	Weighted A	verage			
3	37,666		Pervious Ar	ea			
1	8,787		Impervious	Area			
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 85S: DRAINAGE AREA TO SWALE 10

Summary for Subcatchment 87S: DRAINAGE AREA TO SWALE 6


24.00 cfs @ 12.12 hrs, Volume= Runoff 1.994 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

_	Ar	ea (sf)	CN	Description		
*	20	03,207	30	Woods, Go	od, HSG A	(ONSITE)
*	5	55,408	70	Woods, Go	od, HSG C	(ONSITE)
*		784	77	Woods, Go	od, HSG D	(ONSITE)
*	4	17,045	61	>75% Grass	s cover, Go	ood, HSG B (ONSITE A)
*	3	32,633	80	>75% Grass	s cover, Go	ood, HSG D (ONSITE C)
		4,704	98	Paved park	ing & roofs	
*	44	17,100	42	RA ZONING	A SOILS	
*		5,881	64	RA ZONING	B SOILS	
*	3	31,022	76	RA ZONING	G C SOILS	
*	2	24,786	82	RA ZONING	D SOILS	
	95	52,570	50	Weighted A	verage	
	94	17,866		Pervious Ar	ea	
		4,704		Impervious	Area	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
_	16.3	(1300)	((13000)	(0.0)	Direct Entry, FROM BASIN A HYDROGRAPH

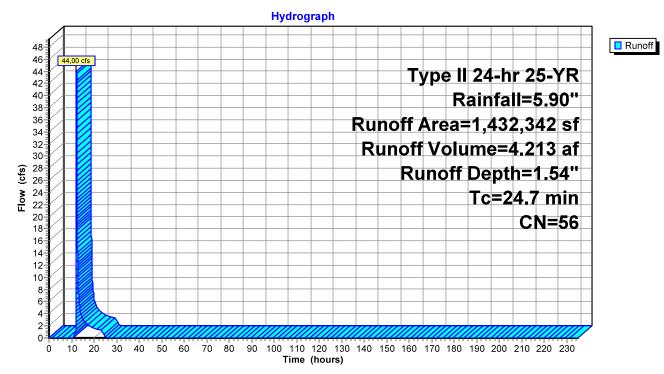
Direct Entry, FROM BASIN A HYDROGRAPH

Subcatchment 87S: DRAINAGE AREA TO SWALE 6

Prepared by {enter your company name here} HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment 92S: AREA TO SWALE 1


44.00 cfs @ 12.21 hrs, Volume= Runoff 4.213 af, Depth= 1.54"

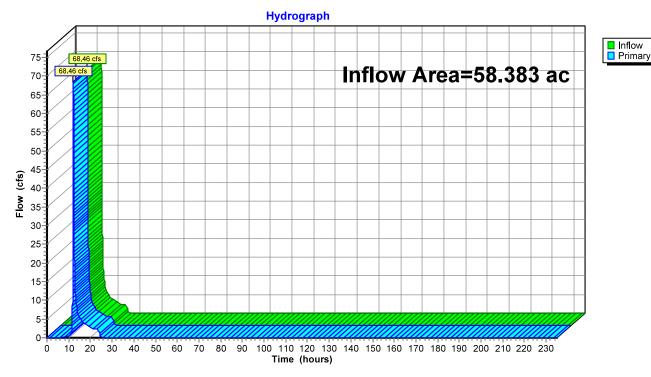
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	Aı	rea (sf)	CN	Description		
	238,936 30 Woods, Good, HSG A			Woods, Go	od, HSG A	
		78,739	70	Woods, Go	od, HSG C	
		26,634	77	Woods, Go	od, HSG D	
*	1	79,075	61	>75% Grass	s cover, Go	ood, HSG B (ONSITE A)
*	1	03,360	80	>75% Grass	s cover, Go	ood, HSG D (ONSITE C)
*		71,885	80	>75% Grass	s cover, Go	ood, HSG D (ONSITE D)
*	4	03,214	42	RA ZONINO	A SOILS	
*	1	03,642	64	RA ZONINO	BSOILS	
*	1	71,248	76	RA ZONINO	C SOILS	
*		55,609	82	RA ZONINO	D SOILS	
	1,4	32,342	56	Weighted A	verage	
	1,4	32,342		Pervious Ar	ea	
	Tc (min)	Length (feet)	Slop (ft/f	•	Capacity (cfs)	Description
	24.7	(1001)	((1.000)	(3.3)	Direct Entry, A-F OF BASIN 1 Tc

Direct Entry, A-F OF BASIN 1 Tc

Subcatchment 92S: AREA TO SWALE 1

Summary for Link 84L: SWALE 10


Inflow Area = 58.383 ac, 1.96% Impervious, Inflow Depth = 1.54" for 25-YR event

Inflow 68.46 cfs @ 12.16 hrs, Volume= 7.493 af

68.46 cfs @ 12.16 hrs, Volume= Primary 7.493 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

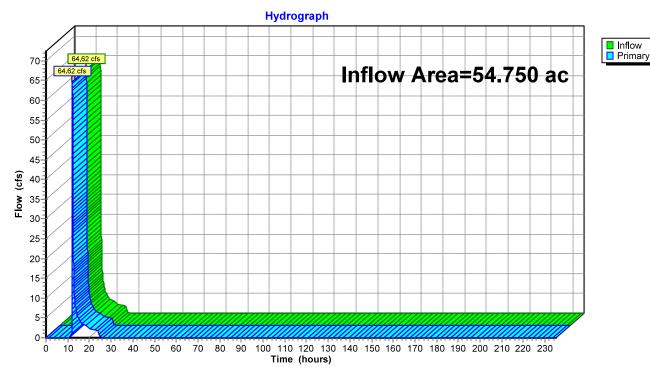
Link 84L: SWALE 10

PC AND DOWNCHUTES_07152020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 10

Summary for Link 85L: SWALE 1


Inflow Area = 54.750 ac, 0.20% Impervious, Inflow Depth = 1.36" for 25-YR event

Inflow = 64.62 cfs @ 12.16 hrs, Volume= 6.207 af

Primary = 64.62 cfs @ 12.16 hrs, Volume= 6.207 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 85L: SWALE 1

PC AND DOWNCHUTES 07152020

Type II 24-hr 100-YR NOAA Rainfall=8.50"

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 11

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 84S: DRAINAGE AREA TO Runoff Area=101,792 sf 25.93% Impervious Runoff Depth=6.70"

Tc=5.0 min CN=85 Runoff=26.77 cfs 1.304 af

Subcatchment 85S: DRAINAGE AREA TO Runoff Area=56,453 sf 33.28% Impervious Runoff Depth=6.82"

Tc=5.0 min CN=86 Runoff=15.01 cfs 0.736 af

Subcatchment 87S: DRAINAGE AREA TO Runoff Area=952,570 sf 0.49% Impervious Runoff Depth=2.56" Tc=16.3 min CN=50 Runoff=65.73 cfs 4.666 af

Subcatchment 92S: AREA TO SWALE 1 Runoff Area=1,432,342 sf 0.00% Impervious Runoff Depth=3.25"

Tc=24.7 min CN=56 Runoff=101.31 cfs 8.897 af

Link 84L: SWALE 10 Inflow=164.87 cfs 15.603 af

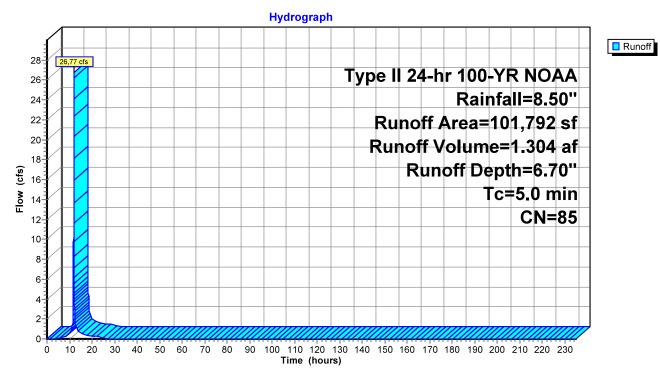
Primary=164.87 cfs 15.603 af

Link 85L: SWALE 1 Inflow=158.72 cfs 13.563 af

Primary=158.72 cfs 13.563 af

Total Runoff Area = 58.383 ac Runoff Volume = 15.603 af Average Runoff Depth = 3.21" 98.04% Pervious = 57.238 ac 1.96% Impervious = 1.145 ac

Page 12


Summary for Subcatchment 84S: DRAINAGE AREA TO SWALE 7

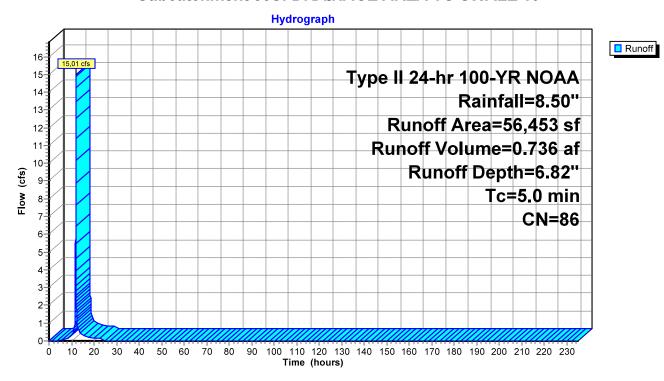
Runoff = 26.77 cfs @ 11.96 hrs, Volume= 1.304 af, Depth= 6.70"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Are	ea (sf)	CN	Description			
7	75,393	80	>75% Gras	s cover, Go	Good, HSG D	
2	26,399	98	Paved road	s w/curbs &	& sewers	
10	01,792	85	Weighted A	verage		
7	75,393					
2	26,399		Impervious	Area		
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	·	
5.0					Direct Entry,	

Subcatchment 84S: DRAINAGE AREA TO SWALE 7

Page 13


Summary for Subcatchment 85S: DRAINAGE AREA TO SWALE 10

Runoff = 15.01 cfs @ 11.96 hrs, Volume= 0.736 af, Depth= 6.82"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

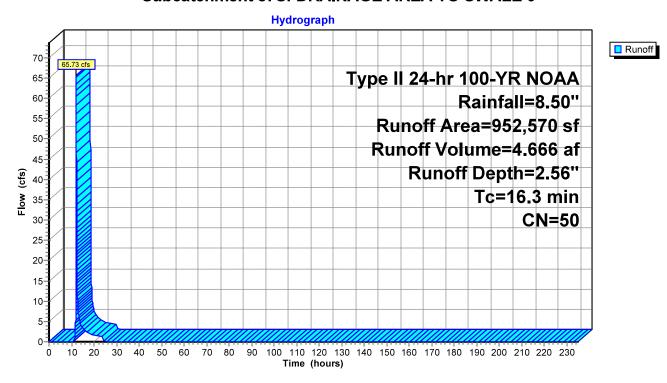
Are	ea (sf)	CN	Description				
3	37,666	80	>75% Gras	s cover, Go	ood, HSG D		
1	8,787	98	Paved road	s w/curbs &	k sewers		
5	6,453	86	Weighted A	verage			
3	37,666		Pervious Ar	ea			
1	8,787		Impervious	Area			
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 85S: DRAINAGE AREA TO SWALE 10

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 14

Summary for Subcatchment 87S: DRAINAGE AREA TO SWALE 6


65.73 cfs @ 12.10 hrs, Volume= Runoff 4.666 af, Depth= 2.56"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

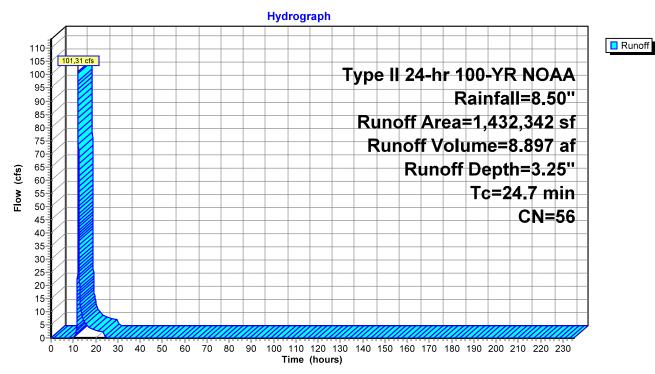
	Are	ea (sf)	CN	Description		
*	20	3,207	30	Woods, Go	od, HSG A	(ONSITE)
*	5	55,408	70	Woods, Go	od, HSG C	(ONSITE)
*		784	77	Woods, Go	od, HSG D	(ONSITE)
*	4	17,045	61	>75% Grass	s cover, Go	ood, HSG B (ONSITE A)
*	8	32,633	80	>75% Grass	s cover, Go	ood, HSG D (ONSITE C)
		4,704	98	Paved park	ing & roofs	
*	44	17,100	42	RA ZONING	A SOILS	
*		5,881	64	RA ZONING	B SOILS	
*	8	31,022	76	RA ZONING	G C SOILS	
*	2	24,786	82	RA ZONINO	D SOILS	
	95	52,570	50	Weighted A	verage	
	94	17,866		Pervious Ar	ea	
		4,704		Impervious	Area	
	Тс	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	16.3					Direct Entry, FROM BASIN A HYDROGRAPH

Direct Entry, FROM BASIN A HYDROGRAPH

Subcatchment 87S: DRAINAGE AREA TO SWALE 6

Page 15

Summary for Subcatchment 92S: AREA TO SWALE 1


Runoff = 101.31 cfs @ 12.19 hrs, Volume= 8.897 af, Depth= 3.25"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	Area (sf)	CN	Description	
	238,936	30	Woods, Good, HSG A	
	78,739	70	Woods, Good, HSG C	
	26,634	77	Woods, Good, HSG D	
*	179,075	61	>75% Grass cover, Good, HSG B (ONSITE A)	
*	103,360	80	>75% Grass cover, Good, HSG D (ONSITE C)	
*	71,885	80	>75% Grass cover, Good, HSG D (ONSITE D)	
*	403,214	42	RA ZONING A SOILS	
*	103,642	64	RA ZONING B SOILS	
*	171,248	76	RA ZONING C SOILS	
*	55,609	82	RA ZONING D SOILS	
	1,432,342	56	Weighted Average	
	1,432,342		Pervious Area	
	Tc Length	Slo	pe Velocity Capacity Description	
	(min) (feet)	(ft/	/ft) (ft/sec) (cfs)	
	24.7		Direct Entry, A-F OF BASIN 1 Tc	

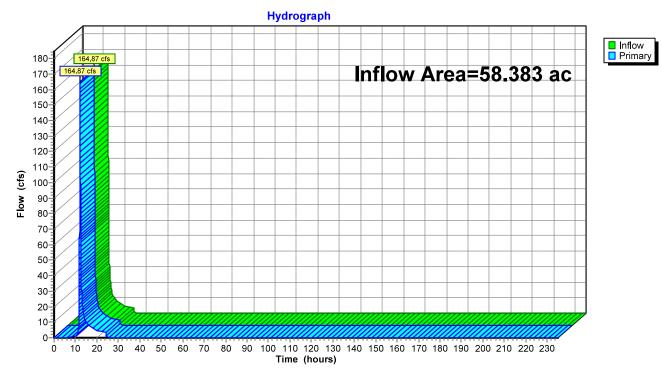
_**,**,.... _

Subcatchment 92S: AREA TO SWALE 1

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

<u>Page 16</u>

Summary for Link 84L: SWALE 10


Inflow Area = 58.383 ac, 1.96% Impervious, Inflow Depth = 3.21" for 100-YR NOAA event

Inflow = 164.87 cfs @ 12.14 hrs, Volume= 15.603 af

Primary = 164.87 cfs @ 12.14 hrs, Volume= 15.603 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

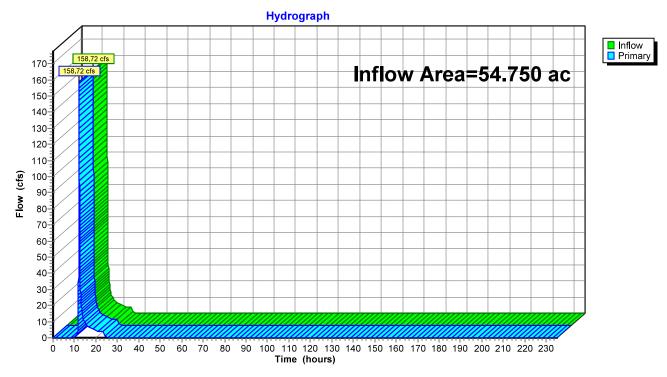
Link 84L: SWALE 10

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

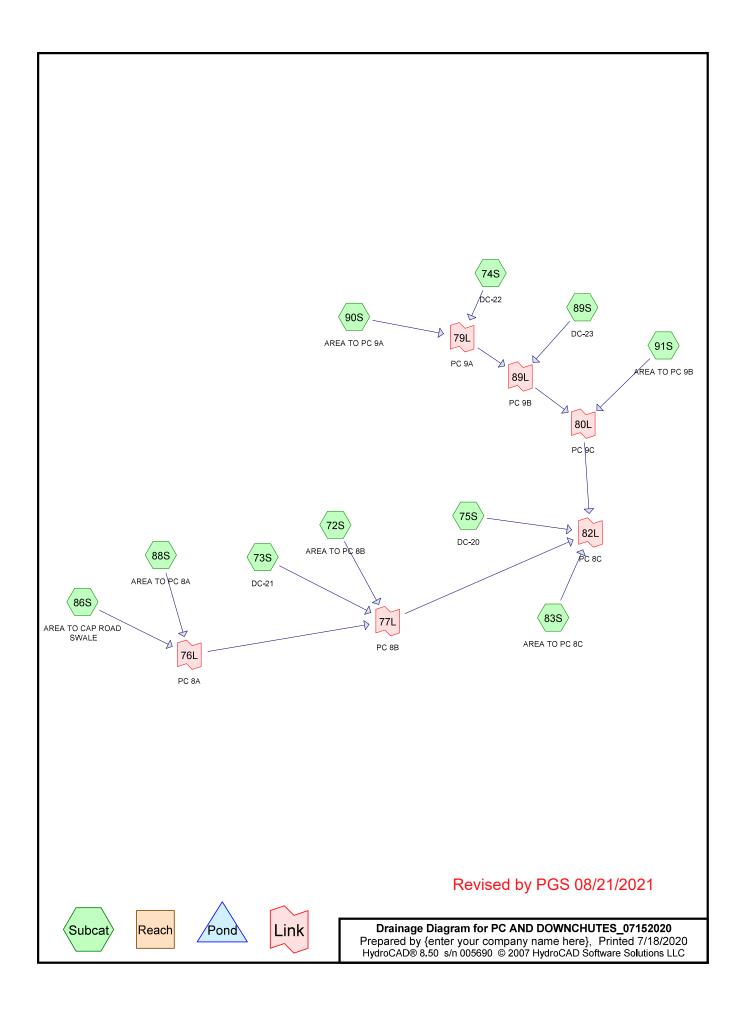
Page 17

Summary for Link 85L: SWALE 1


Inflow Area = 54.750 ac, 0.20% Impervious, Inflow Depth = 2.97" for 100-YR NOAA event

Inflow = 158.72 cfs @ 12.15 hrs, Volume= 13.563 af

Primary = 158.72 cfs @ 12.15 hrs, Volume= 13.563 af, Atten= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 85L: SWALE 1

East Side (Cells 11-16)

PC AND DOWNCHUTES_07152020
Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 2

Area Listing (selected nodes)

	Area	CN	Description
(a	acres)		(subcatchment-numbers)
3	7.672	80	>75% Grass cover, Good, HSG D (72S,73S,74S,75S,83S,86S,88S,89S,90S,91S)
	3.021	98	Paved parking & roofs (72S,83S,88S,90S,91S)
4	10.694		TOTAL AREA

PC AND DOWNCHUTES_07152020
Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020 Page 3

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Goup	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
37.672	HSG D	72S, 73S, 74S, 75S, 83S, 86S, 88S, 89S, 90S, 91S
3.021	Other	72S, 83S, 88S, 90S, 91S
40.694		TOTAL AREA

PC AND DOWNCHUTES_07152020

Type II 24-hr 25-YR Rainfall=5.90" Printed 7/18/2020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Reach roating by by in citing in	a method in ond routing by Byn Glor ma method
Subcatchment 72S: AREA TO PC 8B	Runoff Area=146,396 sf 15.66% Impervious Runoff Depth=4.00" Tc=5.0 min CN=83 Runoff=23.98 cfs 1.120 af
Subcatchment 73S: DC-21	Runoff Area=347,408 sf 0.00% Impervious Runoff Depth=3.69" Tc=5.0 min CN=80 Runoff=53.31 cfs 2.453 af
Subcatchment 74S: DC-22	Runoff Area=190,896 sf 0.00% Impervious Runoff Depth=3.69" Tc=5.0 min CN=80 Runoff=29.30 cfs 1.348 af
Subcatchment 75S: DC-20	Runoff Area=233,065 sf 0.00% Impervious Runoff Depth=3.69" Tc=5.0 min CN=80 Runoff=35.77 cfs 1.646 af
Subcatchment 83S: AREA TO PC 8C	Runoff Area=44,677 sf 22.27% Impervious Runoff Depth=4.10" Tc=5.0 min CN=84 Runoff=7.47 cfs 0.351 af
Subcatchment 86S: AREA TO CAP ROAD	Runoff Area=65,391 sf 0.00% Impervious Runoff Depth=3.69" Tc=5.0 min CN=80 Runoff=10.04 cfs 0.462 af
Subcatchment 88S: AREA TO PC 8A	Runoff Area=158,379 sf 24.90% Impervious Runoff Depth=4.10" Tc=5.0 min CN=84 Runoff=26.47 cfs 1.243 af
Subcatchment 89S: DC-23	Runoff Area=6.417 ac 0.00% Impervious Runoff Depth=3.69" Tc=5.0 min CN=80 Runoff=42.90 cfs 1.974 af
Subcatchment 90S: AREA TO PC 9A	Runoff Area=113,003 sf 20.90% Impervious Runoff Depth=4.10" Tc=5.0 min CN=84 Runoff=18.89 cfs 0.887 af
Subcatchment 91S: AREA TO PC 9B	Runoff Area=193,876 sf 18.41% Impervious Runoff Depth=4.00" Tc=5.0 min CN=83 Runoff=31.76 cfs 1.483 af
Link 76L: PC 8A	Inflow=36.51 cfs 1.705 af Primary=36.51 cfs 1.705 af
Link 77L: PC 8B	Inflow=113.80 cfs 5.278 af Primary=113.80 cfs 5.278 af
Link 79L: PC 9A	Inflow=48.18 cfs 2.235 af Primary=48.18 cfs 2.235 af
Link 80L: PC 9C	Inflow=122.84 cfs 5.692 af Primary=122.84 cfs 5.692 af
Link 82L: PC 8C	Inflow=279.88 cfs 12.966 af Primary=279.88 cfs 12.966 af
Link 89L: PC 9B	Inflow=91.08 cfs 4.209 af Primary=91.08 cfs 4.209 af

PC AND DOWNCHUTES_07152020

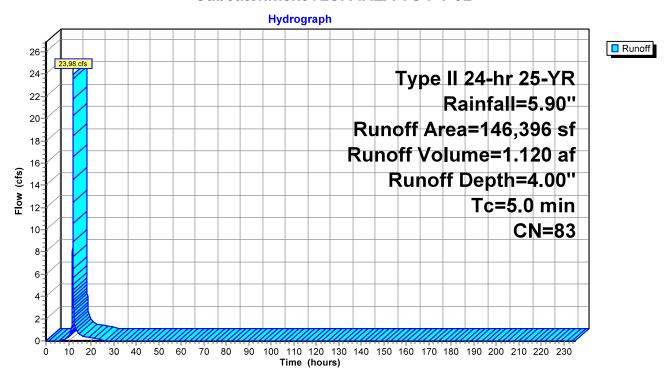
Type II 24-hr 25-YR Rainfall=5.90" Printed 7/18/2020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 5

Total Runoff Area = 40.694 ac Runoff Volume = 12.966 af Average Runoff Depth = 3.82" 92.58% Pervious = 37.672 ac 7.42% Impervious = 3.021 ac

Page 6


Summary for Subcatchment 72S: AREA TO PC 8B

Runoff = 23.98 cfs @ 11.96 hrs, Volume= 1.120 af, Depth= 4.00"

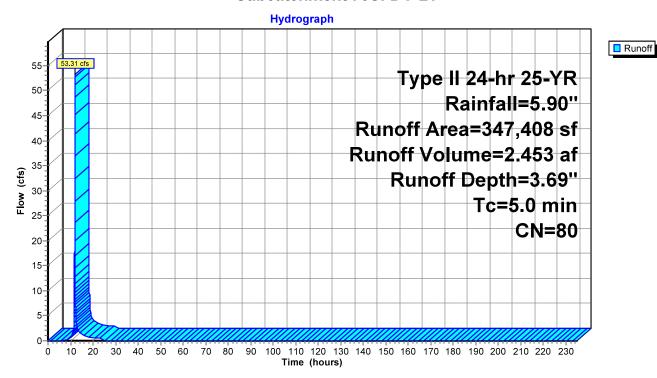
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Are	ea (sf)	CN	Description				
12	3,465	80	>75% Gras	s cover, Go	ood, HSG D		
2	2,931	98	Paved park	ing & roofs	3		
14	6,396	83	Weighted Average				
12	3,465		Pervious Ar	ea			
2	2,931		Impervious	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 72S: AREA TO PC 8B

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 7

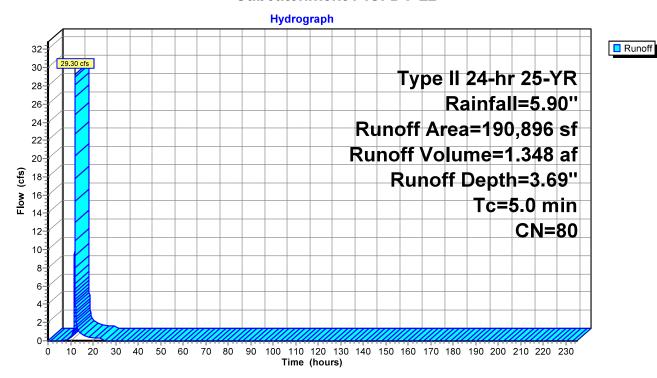

Summary for Subcatchment 73S: DC-21

Runoff = 53.31 cfs @ 11.96 hrs, Volume= 2.453 af, Depth= 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

A	rea (sf)	CN E	Description						
3	47,408	80 >	>75% Grass cover, Good, HSG D						
3	47,408	F	Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0	•	•			Direct Entry,				

Subcatchment 73S: DC-21


Summary for Subcatchment 74S: DC-22

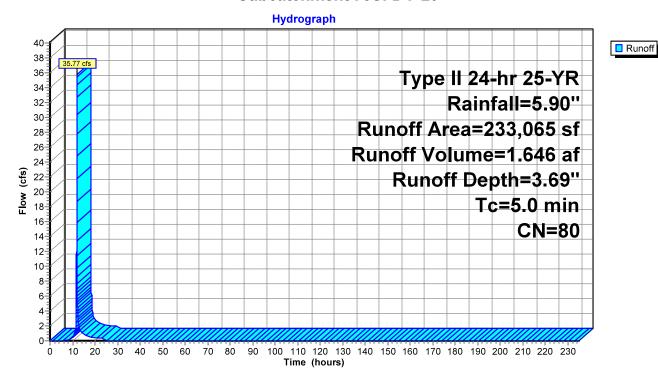
Runoff = 29.30 cfs @ 11.96 hrs, Volume= 1.348 af, Depth= 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

A	rea (sf)	CN E	Description						
1	90,896	80 >	>75% Grass cover, Good, HSG D						
1	90,896	F	Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				

Subcatchment 74S: DC-22

Page 9


Summary for Subcatchment 75S: DC-20

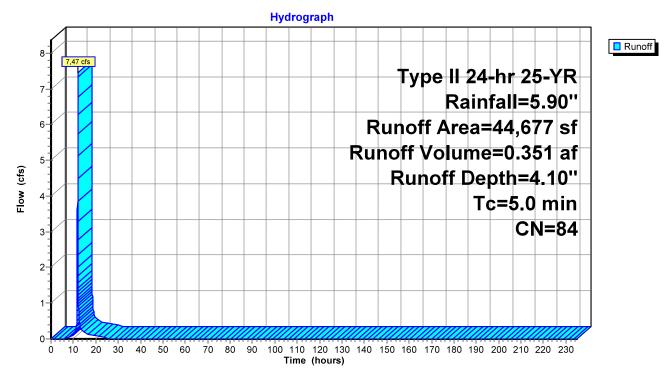
Runoff = 35.77 cfs @ 11.96 hrs, Volume= 1.646 af, Depth= 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

 Α	rea (sf)	CN [Description						
2	33,065	80 >	>75% Grass cover, Good, HSG D						
 2	33,065	F	Pervious Area						
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
 5.0					Direct Entry,				

Subcatchment 75S: DC-20

<u> Page 10</u>

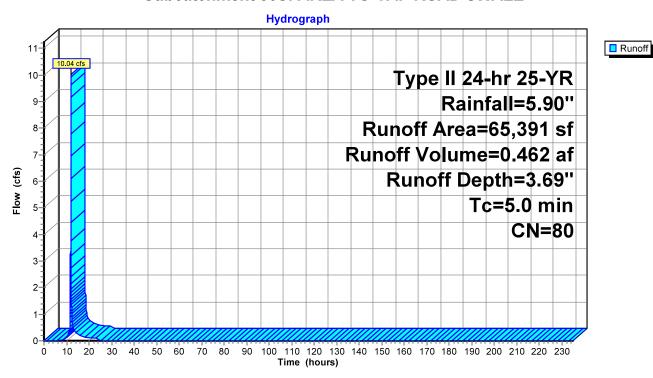

Summary for Subcatchment 83S: AREA TO PC 8C

Runoff = 7.47 cfs @ 11.96 hrs, Volume= 0.351 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

A	rea (sf)	CN	Description				
	34,727	80	>75% Gras	s cover, Go	ood, HSG D		
	9,950	98	Paved park	ing & roofs	5		
	44,677	84	Weighted Average				
	34,727		Pervious Area				
	9,950		Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 83S: AREA TO PC 8C


Summary for Subcatchment 86S: AREA TO CAP ROAD SWALE

Runoff = 10.04 cfs @ 11.96 hrs, Volume= 0.462 af, Depth= 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

	rea (sf)	CN [Description					
	65,391	80 >	>75% Grass cover, Good, HSG D					
	65,391	F	Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 86S: AREA TO CAP ROAD SWALE

Page 12

Summary for Subcatchment 88S: AREA TO PC 8A

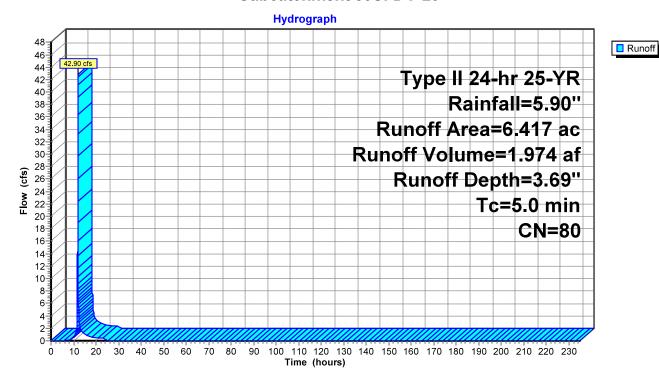
Runoff = 26.47 cfs @ 11.96 hrs, Volume= 1.243 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Area (sf) CN	Description	Description					
118,9	47 80	>75% Gras	s cover, Go	ood, HSG D				
39,4	32 98	Paved park	ing & roofs	3				
158,3	79 84	Weighted A	Weighted Average					
118,9	47	Pervious Ar	rea					
39,4	32	Impervious	Area					
	ngth Slo eet) (ft/		Capacity (cfs)	·				
5.0				Direct Entry,				

Subcatchment 88S: AREA TO PC 8A

Printed 7/18/2020 Page 13


Summary for Subcatchment 89S: DC-23

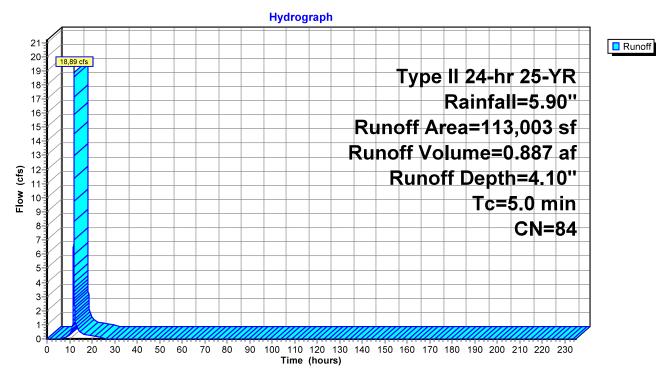
Runoff = 42.90 cfs @ 11.96 hrs, Volume= 1.974 af, Depth= 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Area	(ac)	CN	Desc	cription				
6	.417	80	>75%	>75% Grass cover, Good, HSG D				
- 6	.417		Perv	Pervious Area				
Tc	Lengt	h S	Slope	Velocity	Capacity	Description		
(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Decomplien		
5.0						Direct Entry,		

Subcatchment 89S: DC-23

Printed 7/18/2020 Page 14

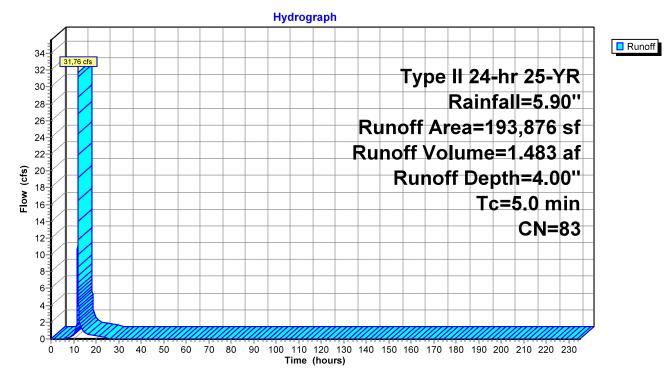

Summary for Subcatchment 90S: AREA TO PC 9A

Runoff = 18.89 cfs @ 11.96 hrs, Volume= 0.887 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

Area (sf)	CN	Description	Description					
89,389	80	>75% Gras	s cover, Go	ood, HSG D				
23,614	98	Paved park	ing & roofs	3				
113,003	84	Weighted A	Weighted Average					
89,389		Pervious Area						
23,614		Impervious	Area					
Tc Length (min) (feet)	Slop (ft/	•	Capacity (cfs)	Description				
5.0		_		Direct Entry,				

Subcatchment 90S: AREA TO PC 9A


Summary for Subcatchment 91S: AREA TO PC 9B

Runoff = 31.76 cfs @ 11.96 hrs, Volume= 1.483 af, Depth= 4.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=5.90"

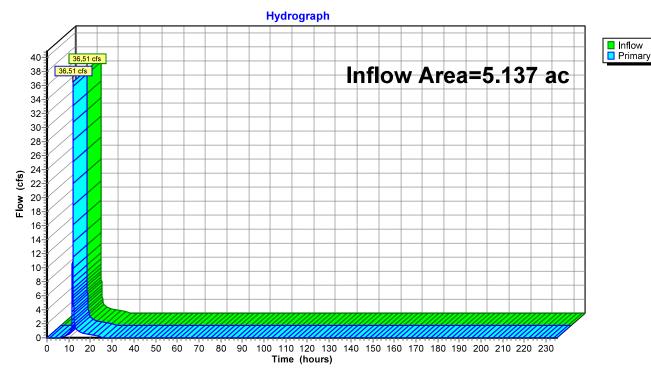
Area	(sf) CN	Description	Description					
158,1	192 80	>75% Gras	s cover, Go	lood, HSG D				
35,6	84 98	Paved park	ing & roofs	S				
193,8	376 83	Weighted A	Weighted Average					
158,1	192	Pervious A	rea					
35,6	884	Impervious	Area					
	ngth Slo feet) (ft	pe Velocity /ft) (ft/sec)	Capacity (cfs)	·				
5.0				Direct Entry,				

Subcatchment 91S: AREA TO PC 9B

Prepared by {enter your company name here} HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 16

Summary for Link 76L: PC 8A


Inflow Area = 5.137 ac, 17.62% Impervious, Inflow Depth = 3.98" for 25-YR event

Inflow 36.51 cfs @ 11.96 hrs, Volume= 1.705 af

36.51 cfs @ 11.96 hrs, Volume= Primary 1.705 af, Atten= 0%, Lag= 0.0 min

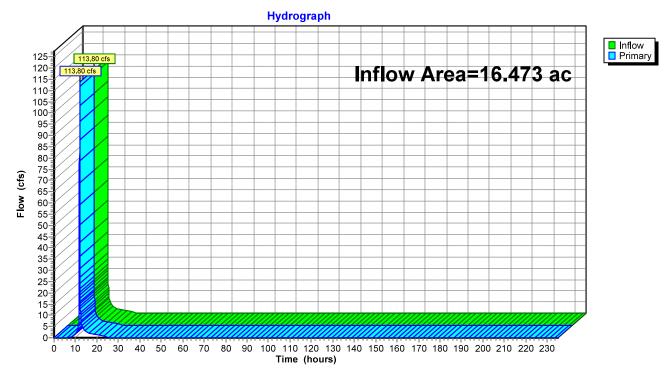
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 76L: PC 8A

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 17

Summary for Link 77L: PC 8B


Inflow Area = 16.473 ac, 8.69% Impervious, Inflow Depth = 3.84" for 25-YR event

Inflow = 113.80 cfs @ 11.96 hrs, Volume= 5.278 af

Primary = 113.80 cfs @ 11.96 hrs, Volume= 5.278 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

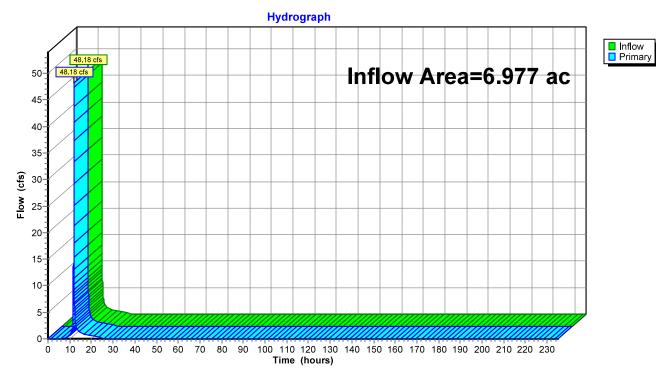
Link 77L: PC 8B

PC AND DOWNCHUTES 07152020

Prepared by {enter your company name here} HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 18

Summary for Link 79L: PC 9A


Inflow Area = 6.977 ac, 7.77% Impervious, Inflow Depth = 3.84" for 25-YR event

Inflow =

48.18 cfs @ 11.96 hrs, Volume= 2.235 af 48.18 cfs @ 11.96 hrs, Volume= 2.235 af, Primary 2.235 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

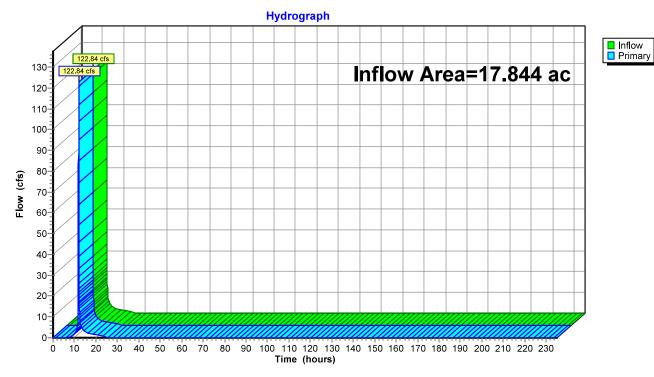
Link 79L: PC 9A

PC AND DOWNCHUTES_07152020

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 19

Summary for Link 80L: PC 9C


Inflow Area = 17.844 ac, 7.63% Impervious, Inflow Depth = 3.83" for 25-YR event

Inflow = 122.84 cfs @ 11.96 hrs, Volume= 5.692 af

Primary = 122.84 cfs @ 11.96 hrs, Volume= 5.692 af, Atten= 0%, Lag= 0.0 min

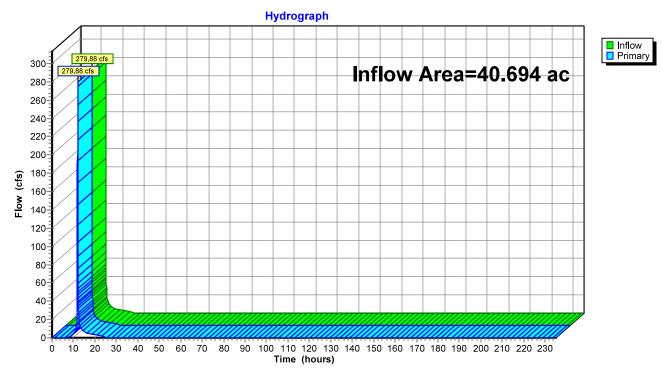
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 80L: PC 9C

Printed 7/18/2020

Page 20

Summary for Link 82L: PC 8C


Inflow Area = 40.694 ac, 7.42% Impervious, Inflow Depth = 3.82" for 25-YR event

Inflow = 279.88 cfs @ 11.96 hrs, Volume= 12.966 af

Primary = 279.88 cfs @ 11.96 hrs, Volume= 12.966 af, Atten= 0%, Lag= 0.0 min

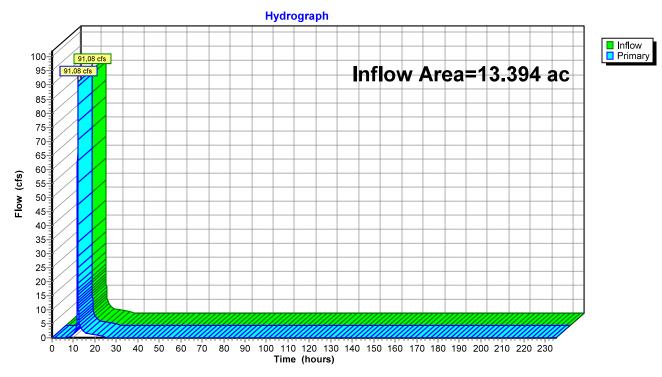
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 82L: PC 8C

Tilled // 10/2020

Page 21

Summary for Link 89L: PC 9B


Inflow Area = 13.394 ac, 4.05% Impervious, Inflow Depth = 3.77" for 25-YR event

Inflow = 91.08 cfs @ 11.96 hrs, Volume= 4.209 af

Primary = 91.08 cfs @ 11.96 hrs, Volume= 4.209 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 89L: PC 9B

PC AND DOWNCHUTES_07152020

Type II 24-hr 100-YR NOAA Rainfall=8.50"

Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 22

Time span=0.00-235.00 hrs, dt=0.01 hrs, 23501 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Reach fouling by Dyn-Stor-in	a method - Folia routing by Dyn-Stor-Ina method
Subcatchment 72S: AREA TO PC 8B	Runoff Area=146,396 sf 15.66% Impervious Runoff Depth=6.46" Tc=5.0 min CN=83 Runoff=37.59 cfs 1.808 af
Subcatchment 73S: DC-21	Runoff Area=347,408 sf 0.00% Impervious Runoff Depth=6.10" Tc=5.0 min CN=80 Runoff=85.62 cfs 4.051 af
Subcatchment 74S: DC-22	Runoff Area=190,896 sf 0.00% Impervious Runoff Depth=6.10" Tc=5.0 min CN=80 Runoff=47.05 cfs 2.226 af
Subcatchment 75S: DC-20	Runoff Area=233,065 sf 0.00% Impervious Runoff Depth=6.10" Tc=5.0 min CN=80 Runoff=57.44 cfs 2.718 af
Subcatchment 83S: AREA TO PC 8C	Runoff Area=44,677 sf 22.27% Impervious Runoff Depth=6.58" Tc=5.0 min CN=84 Runoff=11.61 cfs 0.562 af
Subcatchment 86S: AREA TO CAP ROAD	Runoff Area=65,391 sf 0.00% Impervious Runoff Depth=6.10" Tc=5.0 min CN=80 Runoff=16.12 cfs 0.762 af
Subcatchment 88S: AREA TO PC 8A	Runoff Area=158,379 sf 24.90% Impervious Runoff Depth=6.58" Tc=5.0 min CN=84 Runoff=41.17 cfs 1.993 af
Subcatchment 89S: DC-23	Runoff Area=6.417 ac 0.00% Impervious Runoff Depth=6.10" Tc=5.0 min CN=80 Runoff=68.89 cfs 3.259 af
Subcatchment 90S: AREA TO PC 9A	Runoff Area=113,003 sf 20.90% Impervious Runoff Depth=6.58" Tc=5.0 min CN=84 Runoff=29.38 cfs 1.422 af
Subcatchment 91S: AREA TO PC 9B	Runoff Area=193,876 sf 18.41% Impervious Runoff Depth=6.46" Tc=5.0 min CN=83 Runoff=49.78 cfs 2.394 af
Link 76L: PC 8A	Inflow=57.29 cfs 2.755 af Primary=57.29 cfs 2.755 af
Link 77L: PC 8B	Inflow=180.49 cfs 8.614 af Primary=180.49 cfs 8.614 af
Link 79L: PC 9A	Inflow=76.42 cfs 3.648 af Primary=76.42 cfs 3.648 af
Link 80L: PC 9C	Inflow=195.09 cfs 9.302 af Primary=195.09 cfs 9.302 af
Link 82L: PC 8C	Inflow=444.63 cfs 21.195 af Primary=444.63 cfs 21.195 af
Link 89L: PC 9B	Inflow=145.31 cfs 6.907 af Primary=145.31 cfs 6.907 af

PC AND DOWNCHUTES_07152020

Type II 24-hr 100-YR NOAA Rainfall=8.50"

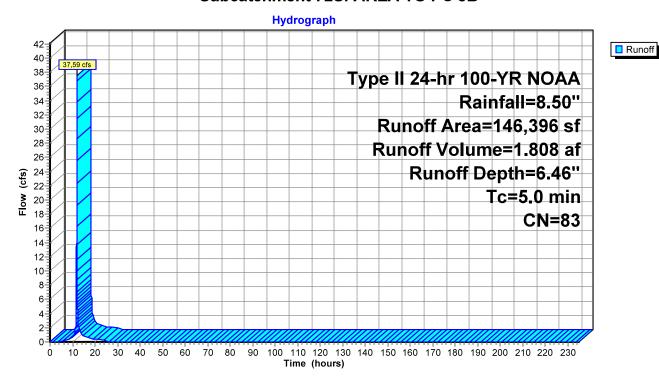
Prepared by {enter your company name here}
HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Printed 7/18/2020

Page 23

Total Runoff Area = 40.694 ac Runoff Volume = 21.195 af Average Runoff Depth = 6.25" 92.58% Pervious = 37.672 ac 7.42% Impervious = 3.021 ac

Page 24


Summary for Subcatchment 72S: AREA TO PC 8B

Runoff = 37.59 cfs @ 11.96 hrs, Volume= 1.808 af, Depth= 6.46"

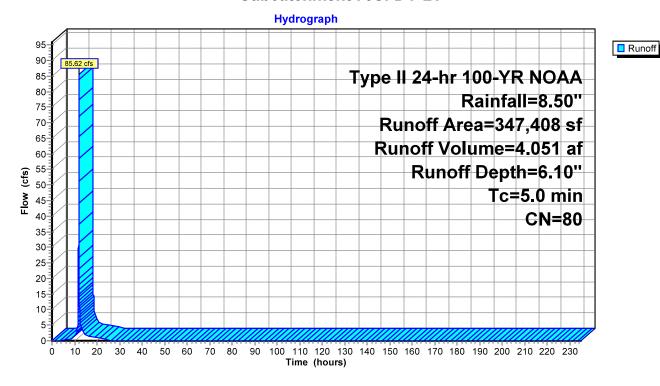
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

A	rea (sf)	CN	Description			
1	23,465	80	>75% Gras	s cover, Go	ood, HSG D	
	22,931	98	Paved park	ing & roofs	3	
1	46,396	83	Weighted Average			
1	23,465		Pervious Area			
	22,931		Impervious	Area		
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description	
5.0					Direct Entry,	

Subcatchment 72S: AREA TO PC 8B

Printed 7/18/2020

Page 25


Summary for Subcatchment 73S: DC-21

Runoff = 85.62 cfs @ 11.96 hrs, Volume= 4.051 af, Depth= 6.10"

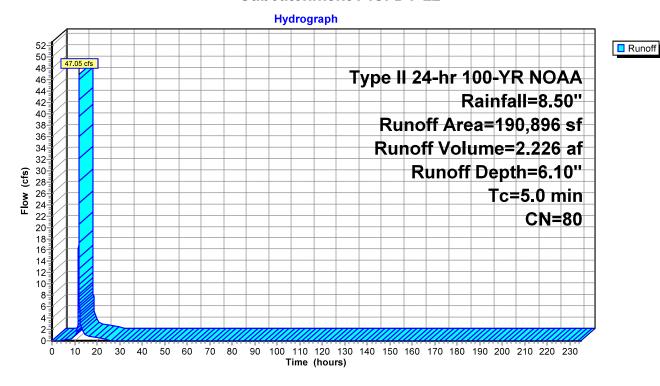
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

A	rea (sf)	CN E	escription					
3	47,408	80 >	>75% Grass cover, Good, HSG D					
3	47,408	F	Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 73S: DC-21

Printed 7/18/2020

Page 26


Summary for Subcatchment 74S: DC-22

Runoff = 47.05 cfs @ 11.96 hrs, Volume= 2.226 af, Depth= 6.10"

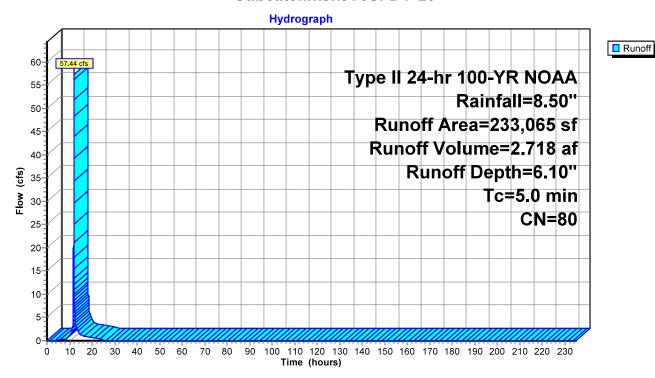
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

A	rea (sf)	CN E	escription					
1	90,896	80 >	>75% Grass cover, Good, HSG D					
1	90,896	F	Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 74S: DC-22

Printed 7/18/2020

Page 27


Summary for Subcatchment 75S: DC-20

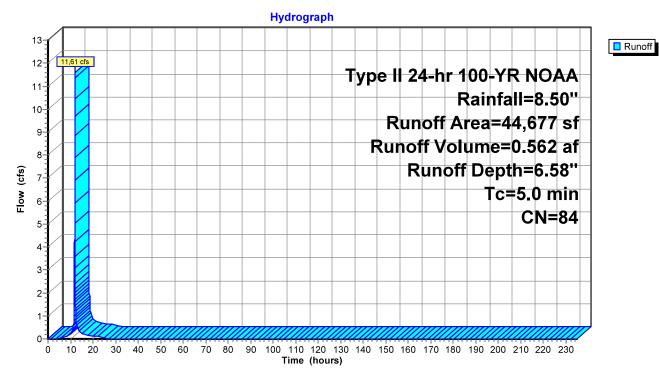
Runoff = 57.44 cfs @ 11.96 hrs, Volume= 2.718 af, Depth= 6.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

 Α	rea (sf)	CN [Description						
2	33,065	80 >	>75% Grass cover, Good, HSG D						
 2	33,065	F	Pervious Area						
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
 5.0					Direct Entry,				

Subcatchment 75S: DC-20

Page 28


Summary for Subcatchment 83S: AREA TO PC 8C

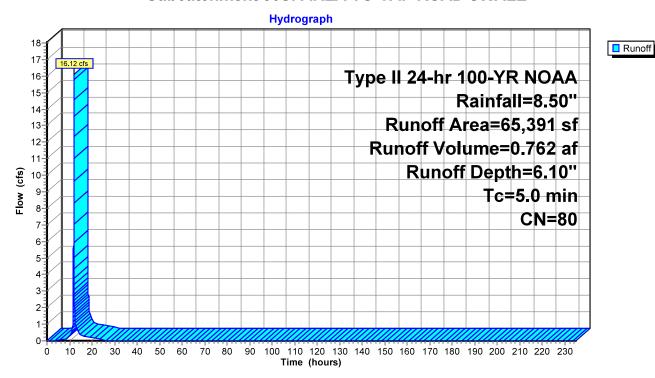
Runoff = 11.61 cfs @ 11.96 hrs, Volume= 0.562 af, Depth= 6.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Ar	ea (sf)	CN	Description			
3	34,727	80	>75% Gras	s cover, Go	lood, HSG D	
	9,950	98	Paved park	ing & roofs	S	
	14,677 34,727 9,950		Weighted Average Pervious Area Impervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	· Velocity	Capacity (cfs)	•	
5.0					Direct Entry,	

Subcatchment 83S: AREA TO PC 8C

Page 29


Summary for Subcatchment 86S: AREA TO CAP ROAD SWALE

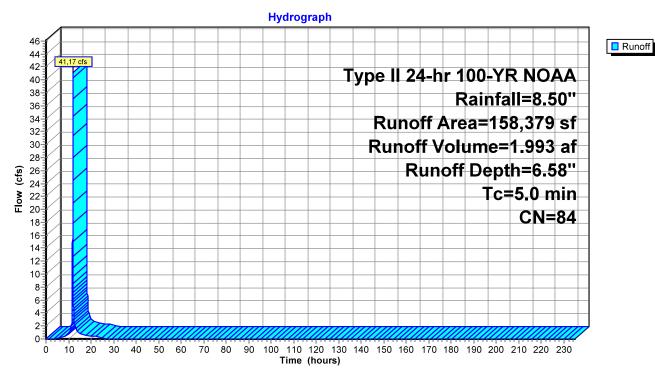
Runoff = 16.12 cfs @ 11.96 hrs, Volume= 0.762 af, Depth= 6.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

	rea (sf)	CN E	Description					
	65,391	80 >	>75% Grass cover, Good, HSG D					
	65,391	F	Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 86S: AREA TO CAP ROAD SWALE

Page 30


Summary for Subcatchment 88S: AREA TO PC 8A

Runoff = 41.17 cfs @ 11.96 hrs, Volume= 1.993 af, Depth= 6.58"

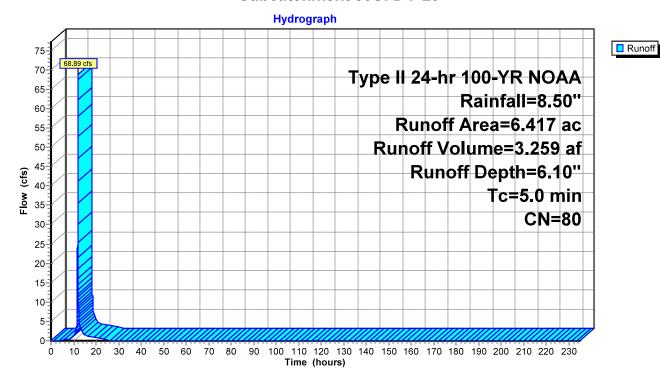
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Ar	ea (sf)	CN I	Description					
1	18,947	80	>75% Gras	s cover, Go	ood, HSG D			
	39,432	98	[⊃] aved park	ing & roofs	3			
1	58,379	84	Neighted A	verage				
1	18,947	1	Pervious Ar	ea				
;	39,432		mpervious	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 88S: AREA TO PC 8A

Printed 7/18/2020

Page 31


Summary for Subcatchment 89S: DC-23

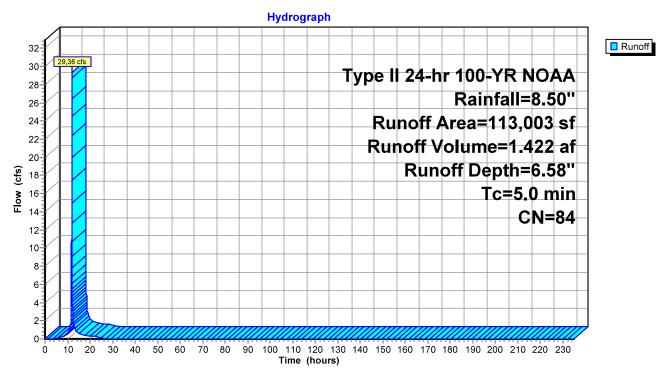
Runoff = 68.89 cfs @ 11.96 hrs, Volume= 3.259 af, Depth= 6.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Area	(ac)	CN	Desc	cription					
6	.417	80	>75%	75% Grass cover, Good, HSG D					
6	.417		Perv	ious Area					
Tc (min)	Length (feet		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0						Direct Entry,			

Subcatchment 89S: DC-23

Page 32


Summary for Subcatchment 90S: AREA TO PC 9A

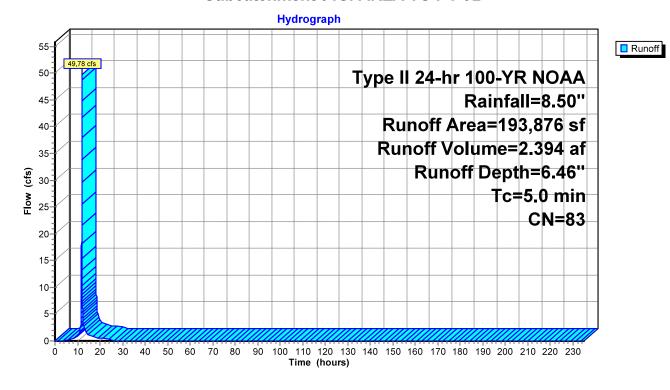
Runoff = 29.38 cfs @ 11.96 hrs, Volume= 1.422 af, Depth= 6.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

Area (sf)	CN	Description	Description					
89,389	80	>75% Gras	s cover, Go	ood, HSG D				
23,614	98	Paved park	ing & roofs	3				
113,003	84	Weighted A	Weighted Average					
89,389		Pervious Ar	rea					
23,614	Impervious Area							
Tc Length (min) (feet)	Slop (ft/	•	Capacity (cfs)	Description				
5.0		_		Direct Entry,				

Subcatchment 90S: AREA TO PC 9A

Page 33


Summary for Subcatchment 91S: AREA TO PC 9B

Runoff = 49.78 cfs @ 11.96 hrs, Volume= 2.394 af, Depth= 6.46"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR NOAA Rainfall=8.50"

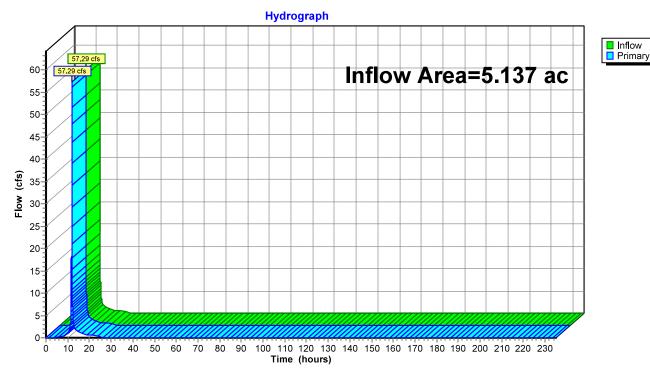
Area (sf) CN	Description					
158,1	92 80	>75% Gras	s cover, Go	lood, HSG D			
35,6	84 98	Paved park	ing & roofs	S			
193,8	76 83	Weighted A	verage				
158,1	92	Pervious Ar	rea				
35,6	84	Impervious	Area				
	ngth Slo eet) (ft	pe Velocity (ft) (ft/sec)	Capacity (cfs)	·			
5.0				Direct Entry,			

Subcatchment 91S: AREA TO PC 9B

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 34

Summary for Link 76L: PC 8A


Inflow Area = 5.137 ac, 17.62% Impervious, Inflow Depth = 6.44" for 100-YR NOAA event

Inflow

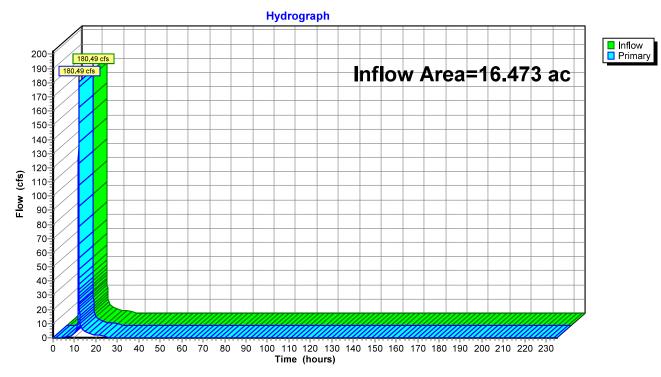
57.29 cfs @ 11.96 hrs, Volume= 2.755 af 57.29 cfs @ 11.96 hrs, Volume= 2.755 af, 2.755 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 76L: PC 8A

<u> Page 35</u>

Summary for Link 77L: PC 8B


Inflow Area = 16.473 ac, 8.69% Impervious, Inflow Depth = 6.27" for 100-YR NOAA event

Inflow = 180.49 cfs @ 11.96 hrs, Volume= 8.614 af

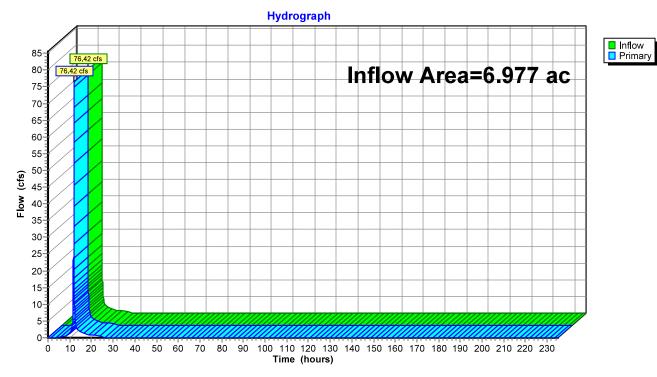
Primary = 180.49 cfs @ 11.96 hrs, Volume= 8.614 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 77L: PC 8B

<u> Page 36</u>

Summary for Link 79L: PC 9A


Inflow Area = 6.977 ac, 7.77% Impervious, Inflow Depth = 6.27" for 100-YR NOAA event

Inflow = 76.42 cfs @ 11.96 hrs, Volume= 3.648 af

Primary = 76.42 cfs @ 11.96 hrs, Volume= 3.648 af, Atten= 0%, Lag= 0.0 min

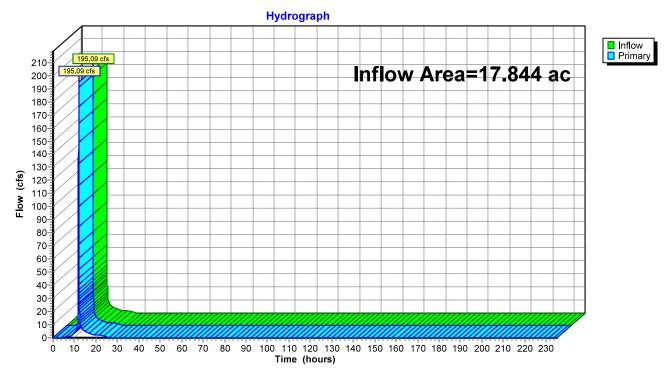
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 79L: PC 9A

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 37

Summary for Link 80L: PC 9C


Inflow Area = 17.844 ac, 7.63% Impervious, Inflow Depth = 6.26" for 100-YR NOAA event

Inflow = 195.09 cfs @ 11.96 hrs, Volume= 9.302 af

Primary = 195.09 cfs @ 11.96 hrs, Volume= 9.302 af, Atten= 0%, Lag= 0.0 min

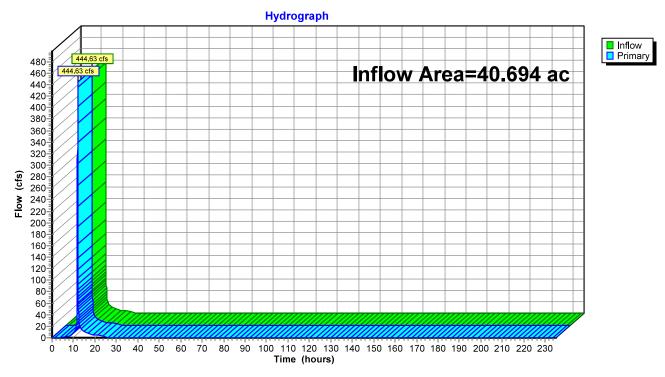
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 80L: PC 9C

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 38

Summary for Link 82L: PC 8C


Inflow Area = 40.694 ac, 7.42% Impervious, Inflow Depth = 6.25" for 100-YR NOAA event

Inflow = 444.63 cfs @ 11.96 hrs, Volume= 21.195 af

Primary = 444.63 cfs @ 11.96 hrs, Volume= 21.195 af, Atten= 0%, Lag= 0.0 min

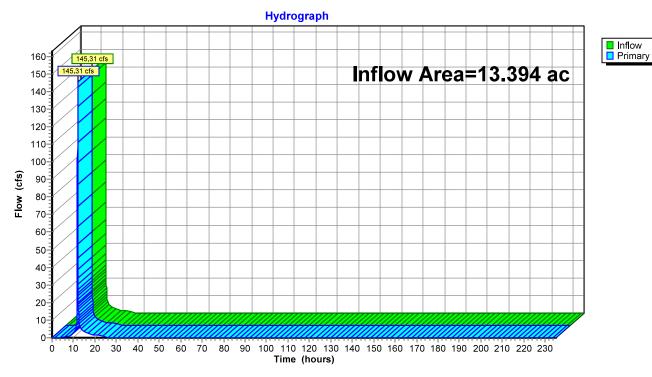
Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 82L: PC 8C

HydroCAD® 8.50 s/n 005690 © 2007 HydroCAD Software Solutions LLC

Page 39

Summary for Link 89L: PC 9B


Inflow Area = 13.394 ac, 4.05% Impervious, Inflow Depth = 6.19" for 100-YR NOAA event

Inflow = 145.31 cfs @ 11.96 hrs, Volume= 6.907 af

Primary = 145.31 cfs @ 11.96 hrs, Volume= 6.907 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-235.00 hrs, dt= 0.01 hrs

Link 89L: PC 9B

ATTACHMENT 17E

Proposed Channels Design

Subject: Stormwater	Management - Propose	ed Channel Flows
Job No. 2018-3854	Made by: RP	Date 07-15-20
Ref.	Checked by: VEF #	Sheet 1 of 4

Revised by PGS 08/27/2021

Objective: The objective of this analysis is to estimate the flow in the proposed stormwater management channels under the design storms being considered.

Design Approach and Assumptions:

Use HydroCad, a computer software which implements the principles of TR-55 and TR-20 for larger drainage areas. The input data for each is as follows:

- With proposed channel flows for the 25 year, 24 hour and 100 year, 24 hour storm events, size the perimeter and downchute channels using open channel flow methods.
- Design the channels to meet 25-year, 24-hour peak flow rates with adequate freeboard.

Use an Excel Spreadsheet that implements Manning's equation, where

Q = (1.49 x R_h ^{2/3} x A x S ^{1/2})/n, where
Q = channel flow rate (cfs)
R_h = hydrualic radius of channel = A/P
A = cross-sectional area of flow
P = wetted perimeter of flow
S = channel slope
n = Manning's coefficient

In the spreadsheet you back-calculate the actual flow depth to meet the design flow, then add freeboard and check shear stress, where

$$\tau$$
 = 62.4 d x S, when
d = flow depth (ft)
s = channel slope (ft/ft)

 Check the selected channel size also contains the flow from the 100-year 24 hour peak flows.

Calculations:

Attached is a summary table of the input data to the HydroCAD program and the computer printout for evaluation for the design storm events.

References:

- HydroCAD, V8.5.
- Advanced GeoServices Corp, Calculations entitled "Stormwater Management Proposed Channel Flow," dated July 15, 2020.
- McCuen, Richard H., et al, "Hydrologic Analysis and Design," 1989.
- PADEP, "Erosion and Sediment Pollution Control Program Manual," March 2000.

Subject: Stormwater Management - Proposed Channel Flows

Job No. 2018-3854

Made by: RP U

Date 07-15-20

Ref.

Checked by: VEF9

Sheet 2 of 4

Revised by PGS 08/27/2021

Conclusions:

A summary of the inflow and the proposed channel configurations for perimeter channels and downchutes are provided in the table below.

Channel ID	Chan	nel Dimens	sions	25 year, 2 storm		100 year, storm	
	Base Width	Depth	Side Slope	Qout (cfs)	V (fps)*	Qout (cfs)	V (fps)*
			DOWNCHU				
DC-1	15.3	1.0	2H:1V	60.95	12.1	94.79	14.4
DC-2	13.8	1.0	2H:1V	54.36	12.0	85.88	14.3
DC-3	17.9	1.0	2H:1V	70.96	12.1	113.02	14.4
DC-4	13.8	1.0	2H:1V	49.88	11.6	80.10	13.9
DC-5	13.8	1.0	2H:1V	51.59	11.8	82.86	14.1
DC-6	17.9	1.0	2H:1V	68.55	11.9	107.42	14.2
DC-7	17.9	1.0	2H:1V	65.04	11.9	103.58	14.0
DC-8	17.9	1.0	2H:1V	59.62	11.4	100.17	13.8
DC-9	12.4	1.0	2H:1V	47.30	11.8	74.71	14.0
DC- 10	16.5	1.0	2H:1V	58.89	11.6	93.03	14.0
DC-20	11.0	1.0	2H:1V	35.77	11.0	57.44	13.3
DC-21	15.1	1.0	2H:1V	53.31	11.6	85.62	13.9
DC- 22	9.6	1.0	2H:1V	29.30	10.7	47.05	12.8
DC- 23	11	1.0	2H:1V	42.90	11.9	68.89	13.9
	1		PERIMETER CH				
PC- 1	9.6	2.5	2H:1V	64.62	5.7	158.72	6.6
PC-2	4.1	2.0	2H:1V	31.83	5.7	57.96	6.6
PC-3A	4.1	2.0	2H:1V	15.97	6.4	24.83	7.6
PC-3B	9.6	2.0	2H:1V	80.84	7.7	128.22	4.7
PC- 3C	13.8	2.6	2H:1V	140.25	8.2	228.15	9.0
PC-3D	15.1	2.6	2H:1V	197.64	7.0	319.29	9.7
PC- 3E	15.1	3.2	2H:1V	282.93	9.1	455.14	10.6
PC-4A	4.1	2.0	2H:1V	40.72	6.1	63.32	6.9
PC-4B	13.8	2.0	2H:1V	109.16	7.2	170.64	8.4
PC-4C	13.8	2.5	2H:1V	160.59	7.7	253.31	8.9
PC-4D	15.1	2.8	2H:1V	210.30	8.8	333.21	10.2
PC-4E	15.1	3.3	2H:1V	281.05	9.1	445.99	10.5
PC-4F	15.1	3.5	2H:1V	347.91	9.7	552.08	11.2
PC-5	9.6	2.2	2H:1V	81.01	8.9	126.24	10.3
PC-6	8.3	2.0	2H:1V	24.00	7.4	65.73	10.5
PC- 7	2,8	2.0	2H:1V	17.34	8.9	26.77	10.1
PC-8A	2.8	2.0	2H:1V	36.51	7.2	57.29	8.1
PC-8B	8.3	2.0	2H:1V	113.80	8.4	180.49	9.3
PC-8C	17.9	2.2	2H:1V	279.88	8.1	444.63	9.4
PC- 9A	8.3	2.6	2H:1V	48.18	5.4	76.42	6.2
PC- 9B	9.6	2.6	2H:1V	91.08	6.4	145.31	7.4
PC- 9C	13.8	2.6	2H:1V	122.84	4.6	195.09	5.3
PC- 10	9.6	2.0	2H:1V	68.46	8.4	164.87	11.2

Subject: Stormwater Management - Proposed Channel Flows

Job No. 2018-3854 | Made by: RP)

Date 07-15-20

Ref.

Checked by: VEF 9

Sheet 3 of 4

Revised by PGS 08/27/2021

The required channel depth and velocities were checked for minimum and maximum slope conditions for each channel. The velocity values provided in the table are the maximum values associated with the maximum slope. Perimeter channels and downchutes will both be armored with cable-concrete channel lining (CC-45 from Bethlehem Precast, or equivalent).

The 25 year, 24 hour storm event flow rates will be used to determine the size of the channels and select channel lining. These flow rates will also be used to size culverts.

Terraces

The Terraces and (Final Cover) Access Road channels were checked for typical expected flows.

00 120

The longest terrace is on the West Side with a drainage area of 1200 liner feet in length by 80-feet slope upgradient. Drainage area = 96,000 s.f. = 2.2 acres

The 2nd longest Terrace is on the East side at 520 feet in length with an upgradient slope of 80 feet provide an area of $\frac{520}{725}$ $\frac{80}{120}$ $\frac{41,600}{87,000}$ s.f. = 0.96 acres

Using a c = 0.35 and an € = 8.0 in.hr (assuming a Tc of 5 minutes for 25 year storm)

Using the Rational Method, where Q (cfs) = c ¿ A, with ¿ in inches/hr and A in acres

Q west =
$$(0.35) (8.0) \cdot \frac{2.5}{(2.2)} = 6.2$$
-cfs
Q east = $(0.35) (8.0) \cdot \frac{(0.96)}{5.6} = 2.7$ -cfs

Using the open channel flow method for evaluation, with

Manning's n = 0.08 for Retardance D (Rh = 0.38, S=2%) Manning's n = 0.065 for Retardance D (Rh = 0.34, S=3%)

Min channel depth for the longest and 2nd longest terraces are 0.81 and 0.59 feet, respectively. The Remaining terraces have drainage areas comparable to or smaller than the 2nd longest terrace. With a specified depth of 1.0 for the terraces, there is adequate freeboard. Velocities under both conditions remained below 2 fps, which is less than the recommended 4 fps for grassed, easily eroded soil and 5 fps for erosion resistant soils (on slopes less than 5%) when stabilized with permanent vegetation.

The final Terrace design is: Triangular channel,
43H:1V on one side; 10H:1V on the other
1 foot deep.
Grassed lined.

AR Channel

The Access Road Channel is along the inside edge of the final cover access road, and collect runoff mostly from the access road and small areas of upgradient slope between terraces. Where the

Subject: Stormwater	Management - Propose	d Channel Flows
Job No. 2018-3854	Made by: RP	Date 07-15-20
Ref.	Checked by: VEF//4	Sheet 4 of 4

Revised by PGS 08/27/2021

access road (AR) channel intersects with Downchutes channels, the flow discharges into the Downchute.

The longest AR channel is on the East Section where it does not cross a Downchute. The length of the AR Channel is 750 feet, with an upslope measures 0 ft and the upgradient slope measuring 90 ftat the downgradient end. The access road is 24-feet wide.

Drainage Area = $750 \times ({(90+24) + (0 + 24)}/2) = 750 \times (69) = 51,750 \text{ s.f.} = 1.19 \text{ acres}$

Using a c = 0.35 and an i = 8.0 in.hr (assuming a Tc of 5 minutes for 25 year storm)

Using the Rational Method, where Q (cfs) = c ¿ A, with ¿ in inches/hr and A in acres

 $Q_{AR\ Channel} = (0.35)(8.0)(1.19) = 3.3\ cfs$

Using an Excel spreadsheet the employs Manning's Equation for open channel flow, the AR Channel will be the following configuration:

Trapezoidal channel,
43H:1V on one side; 2H:1V on the other
3 foot base width
1 foot deep.
Grassed lined.

Velocity was check for the 4% and 8% slopes. The calculated peak velocity of 2.31 fps was on the 8% sloped segments of the channel, which is less than the recommended 3 fps for grassed, easily eroded soil and 4 fps for erosion resistant soils (on slopes between 5% and 10%) when stabilized with permanent vegetation.

PERIMETER CHANNEL DESIGN 25-year, 24 hour storm event flows

CHANNEL OR CHANNEL SECTION	1A	1A	1B	1B	2	2	3A	3B	3C	3C	3D	3E	3E	4A.	4A
PROTECTIVE LINING **	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB							
CHANNEL TOP WIDTH @ D (FT)	16.68	15.52	16.68	15.52	10.38	9,54	9.70	15.24	21.96	20.12	23.34	23.86	24.90	10.38	11.02
CHANNEL TOP WIDTH @ d (FT)	14.68	13.52	14.68	13.52	8.38	7.54	7.70	13.24	19.96	18.12	21.34	21.86	22.90	8.38	9.02
CHANNEL SIDE SLOPES (H:1V)	2.00	2.00	2.00	2.00	2.00	2.00	2	2	2	2	2	2	2	2	2
CHANNEL BOTTOM WIDTH (FT)	9.60	9.60	9.60	9.60	4.10	4.10	4.1	9.6	13.8	13.8	15.1	15.1	15.1	4.1	4.1
d (FLOW DEPTH IN FEET)	1.27	0.98	1.27	0.98	1.07	0.86	0.9	0,91	1.54	1.08	1.56	1.69	1.95	1.07	1.23
BOTTOM WIDTH: DEPTH RATIO (12:1 MAX)	7.56	9.80	7.56	9.80	3.83	4.77	4.6	10.5	9.0	12.8	9.7	8.9	7.7	3.8	3.3
A (AREA IN SF)	15.42	11.33	15.42	11.33	6.68	5.01	5.31	10.3922	25,9952	17.2368	28.4232	31.2312	37.05	6.6768	8.0688
R (HYDRAULIC RADIUS)	1.01	0.81	1.01	0.81	0.75	0.63	0.65	0.76	1.26	0.93	1.29	1.38	1.56	0.75	0.84
S (BED SLOPE, FT/FT) *	0.008	0.02	0.008	0.02	0.015	0.035	0.018	0.040	0.010	0.035	0.016	0.025	0.015	0.025	0.015
VEGETATIVE LINING RETARDANCE	NA	NA	NA	NA	NA	NA	NA	NA							
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
V (AT FLOW DEPTH d, FPS)	4.18	5.71	4.18	5.71	4.70	6.38	4.7	7.7	5.4	8.2	7.0	9.1	7.6	6.1	5.1
Q (AT FLOW DEPTH d, CFS)	64.42	64.66	64,42	64.66	31.39	31.95	24.9	80.4	140.6	142.2	197.6	284.0	282.9	40.5	40.9
Qr (REQUIRED CAPACITY, CFS)	64.62	64 62	64,62	64,62	31.83	31.83	16.0	80.8	140.3	140.3	197.6	282.9	282.9	40.7	40.7
Sc (CRITICAL SLOPE)	0.02	0.02	0.02	0.02	0.02	0.02	0.018	0.017	0.014	0.016	0.014	0.014	0.013	0.017	0.017
.7Sc	0.01	0.01	0.01	0.01	0.01	0.01	0.013	0.012	0.010	0.011	0.010	0.010	0.009	0.012	0.012
1.3Sc	0.02	0.02	0.02	0.02	0.02	0.02	0.024	0.022	0.019	0.020	0.018	0.018	0.017	0.023	0.022
STABLE FLOW? (Y/N)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A							
FREEBOARD (STABLE FLOW, FT)	0.32	0.25	0.32	0.25	0.27	0.22	0.225	0.2275	0.385	0.27	0.39	0.4225	0.4875	0.2675	0.3075
MINIMUM REQUIRED FREEBOARD, FT	0.50	0.50	0.50	0.50	0.50	0.50	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
D (TOTAL DEPTH, FT)	1.77	1.48	1.77	1.48	1.57	1.36	1.4	1.41	2.04	1.58	2.06	2.19	2.45	1.57	1.73
PROVIDED DEPTH (FT)	2.50	2.50	2.50	2.50	2.00	2.00	2	2	2.6	2.6	2.6	3.2	3.2	2	2
d50 STONE SIZE (IN)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a							
DESIGN METHOD FOR PROTECTIVE ****		1			+				1				100	70.00	
LINING PERMISSIBLE VELOCITY (V) OR	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
SHEAR STRESS (S)					100					11.7		108	1.5		
Va (ALLOWABLE VELOCITY, FPS)+	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
td (SHEAR STRESS AT d, PSF)	0.63	1.22	0.63	1.22	1.00	1.88	1.01	2.27	0.96	2.36	1.56	2.64	1.83	1.67	1.15
та (MAX ALLOWABLE, PSF)+	9.80	9.80	9,80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

PERIMETER CHANNEL DESIGN 25-year, 24 hour storm event flows

CHANNEL OR CHANNEL SECTION	4B	4B	4C	4C	4D	4D	4E	4E	4F	4F	5	5	6	6	7
PROTECTIVE LINING **	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB
CHANNEL TOP WIDTH @ D (FT)	20.56	19.68	20.92	21.72	25.80	22.50	23.82	24.90	24.70	26.05	16.56	14.88	11.78	12.46	7.84
CHANNEL TOP WIDTH @ d (FT)	18.56	17.68	18.92	19.72	23.66	20.50	21.82	22.90	22.70	23.86	14.56	12.88	9.78	10.46	5.84
CHANNEL SIDE SLOPES (H:1V)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
CHANNEL BOTTOM WIDTH (FT)	13.8	13.8	13.8	13.8	15.1	15.1	15.1	15.1	15.1	15.1	9.6	9.6	8.3	8.3	2.8
d (FLOW DEPTH IN FEET)	1.19	0.97	1.28	1.48	2.14	1.35	1.68	1.95	1.9	2.19	1.24	0.82	0.37	0.54	0.76
BOTTOM WIDTH: DEPTH RATIO (12:1 MAX)	11.6	14.2	10.8	9.3	7.1	11.2	9.0	7.7	7.9	6.9	7.7	11.7	22.4	15.4	3.7
A (AREA IN SF)	19.2542	15.2678	20.9408	24.8048	41.4732	24.03	31.0128	37.05	35.91	42.6612	14.9792	9.2168	3.3448	5.0652	3.2832
R (HYDRAULIC RADIUS)	1.01	0.84	1.07	1.21	1.68	1.14	1.37	1.56	1.52	1.71	0.99	0.69	0.34	0.47	0.53
S (BED SLOPE, FT/FT) *	0.015	0.030	0.025	0.015	0.015	0.030	0.025	0.015	0.025	0.015	0.014	0.060	0.110	0.030	0.030
VEGETATIVE LINING RETARDANCE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0,032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
V (AT FLOW DEPTH d, FPS)	5.7	7.2	7.7	6.5	8.0	8.8	9.1	7.6	9.7	8.1	5.5	8.9	7.4	4.9	5.3
Q (AT FLOW DEPTH d, CFS)	110.0	109.5	161.1	160.6	333.5	210.5	281.1	282.9	348.8	347.5	81.7	82.2	24.9	24.7	17.3
Qr (REQUIRED CAPACITY, CFS)	109.2	109.2	160.6	160.6	210.3	210.3	281.1	281.1	347.9	347.9	81.0	81.0	24.0	24.0	17.3
Sc (CRITICAL SLOPE)	0.015	0.016	0.015	0.014	0.013	0.015	0.014	0.013	0.013	0.013	0.016	0.017	0.022	0.020	0.020
.7Sc	0.011	0.011	0.011	0.010	0.009	0.010	0.010	0.009	0.009	0.009	0.011	0.012	0.015	0.014	0.014
1.3Sc	0.020	0.021	0.020	0.019	0.017	0.019	0.018	0.017	0.018	0.017	0.020	0.023	0.028	0.025	0.025
STABLE FLOW? (Y/N)	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FREEBOARD (STABLE FLOW, FT)	0.2975	0.2425	0.32	0.37	0.535	0.3375	0.42	0.4875	0.475	0.5475	0.31	0.205	0.0925	0.135	0.19
MINIMUM REQUIRED FREEBOARD, FT	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0,5	0.5
D (TOTAL DEPTH, FT)	1.69	1.47	1.78	1.98	2.675	1.85	2.18	2.45	2.4	2.7375	1.74	1.32	0.87	1.04	1.26
PROVIDED DEPTH (FT)	2	2	2.5	2.5	2.8	2.8	3.3	3.3	3.5	3.5	2.2	2.2	2	2	2
d50 STONE SIZE (IN)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
DESIGN METHOD FOR PROTECTIVE ****		1115							1	1			-		
LINING PERMISSIBLE VELOCITY (V) OR	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
SHEAR STRESS (S)											100		1		1000
Va (ALLOWABLE VELOCITY, FPS)+	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
td (SHEAR STRESS AT d, PSF)	1.11	1.82	2.00	1.39	2.00	2.53	2.62	1.83	2.96	2.05	1.08	3.07	2.54	1.01	1.42
τα (MAX ALLOWABLE, PSF)+	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns.

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

PERIMETER CHANNEL DESIGN 25-year, 24 hour storm event flows

CHANNEL OR CHANNEL SECTION	7	8A	8A	8B	8B	8C	9A	9B	9B	9C	10	10	FC AR Channel	FC AR Channe
PROTECTIVE LINING **	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	Grass	Grass
CHANNEL TOP WIDTH @ D (FT)	6.88	8.96	9.76	15.90	16.58	26.42	13.90	16.40	18.00	22.12	15.20	14.56	8.05	9.35
CHANNEL TOP WIDTH @ d (FT)	4.88	6.96	7.76	13.90	14.58	24.42	11.90	14.40	16.00	20.12	13.20	12.56	5,55	6.85
CHANNEL SIDE SLOPES (H:1V)	2	2	2	2	2	2	2	2	2	2	2	2	2.5	2.5
CHANNEL BOTTOM WIDTH (FT)	2.8	2.8	2.8	8.3	8.3	17.9	8.3	9.6	9.6	13.8	9.6	9.6	4	4
d (FLOW DEPTH IN FEET)	0.52	1.04	1.24	1.40	1.57	1.63	0.9	1.20	1.60	1.58	0.9	0.74	0.31	0.57
BOTTOM WIDTH: DEPTH RATIC (12:1 MAX)	5.4	2.7	2.3	5.9	5.3	11.0	9.2	8.0	6.0	8.7	10.7	13.0	12.9	7.0
A (AREA IN SF)	1.9968	5.0752	6.5472	15.54	17.9608	34.4908	9.09	14.4	20.48	26.7968	10.26	8.1992	1.48025	3.09225
R (HYDRAULIC RADIUS)	0.39	0.68	0.78	1.07	1.17	1.37	0.74	0.96	1.22	1.28	0.75	0.64	0.26	0.44
S (BED SLOPE, FT/FT) *	0.130	0.040	0.020	0.030	0.015	0.020	0.020	0.020	0.007	0.007	0.030	0.060	0.080	0.080
VEGETATIVE LINING RETARDANCE	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.050	0.050
V (AT FLOW DEPTH d, FPS)	8.9	7.2	5.6	8.4	6.3	8.1	5.4	6.4	4.4	4.6	6.7	8.4	3.4	4.8
Q (AT FLOW DEPTH d, CFS)	17.8	36.5	36.6	130.5	113.6	279.3	48.7	92.2	91.0	123.0	68.3	68.9	5.1	15.0
Qr (REQUIRED CAPACITY, CFS)	17.3	36.5	36.5	113.8	113.8	279.9	48.2	91,1	91.1	122.8	68,5	68.5	5.0	15.0
Sc (CRITICAL SLOPE)	0.021	0.018	0.017	0.015	0.015	0.014	0.017	0.016	0.015	0.014	0.017	0.018	0.058	0.049
.7Sc	0.015	0.013	0.012	0.011	0.010	0.010	0.012	0.011	0.010	0.010	0.012	0.012	0.041	0.035
1.3Sc	0.028	0.024	0,023	0.020	0.019	0.018	0.022	0.020	0.019	0.018	0.022	0.023	0.076	0.064
STABLE FLOW? (Y/N)	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Υ	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FREEBOARD (STABLE FLOW, FT)	0.13	0.26	0.31	0.35	0.3925	0.4075	0.225	0.3	0.4	0.395	0.225	0.185	0.0775	0.1425
MINIMUM REQUIRED FREEBOARD, FT	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
D (TOTAL DEPTH, FT)	1.02	1.54	1.74	1.9	2.07	2.13	1.4	1.7	2.1	2.08	1.4	1.24	0.81	1.07
PROVIDED DEPTH (FT)	2	2	2	2	2	2.2	2.6	2.6	2.6	2.6	2	2	1.5	1.5
d50 STONE SIZE (IN)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
DESIGN METHOD FOR PROTECTIVE ****		1	-			1	1				1-7			
LINING PERMISSIBLE VELOCITY (V) OR	S	S	S	S	S	S	S	S	S	S	S	S	S	S
SHEAR STRESS (S)					1 To 1 To 1			364	100		100			1
Va (ALLOWABLE VELOCITY, FPS)+	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
τd (SHEAR STRESS AT d, PSF)	4.22	2.60	1.55	2.62	1.47	2.03	1.12	1.50	0.70	0.69	1.68	2.77	1.55	2.85
τa (MAX ALLOWABLE, PSF)+	9.80	9.80	9.80	9.80	9.80	9,80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns.

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

PERIMETER CHANNEL DESIGN 100-year, 24 hour storm event flows

CHANNEL OR CHANNEL SECTION	1A	1A	1B	1B	2	2	3A	3B	3C	3C	3D	3E	3E	4A	4A
PROTECTIVE LINING **	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB
CHANNEL TOP WIDTH @ D (FT)	18.15	16.66	18.15	16.66	11.98	10.82	9.70	16.36	23.95	21.48	25.35	26.15	27.85	11.50	12.26
CHANNEL TOP WIDTH @ d (FT)	16.15	14.66	16.15	14.66	9.98	8,82	7.70	14.36	21.92	19.48	23,30	23.94	25.30	9.50	10.26
CHANNEL SIDE SLOPES (H:1V)	2.00	2.00	2.00	2.00	2.00	2.00	2	2	2	2	2	2	2	2	2
CHANNEL BOTTOM WIDTH (FT)	9.60	9.60	9.60	9.60	4.10	4.10	4.1	9.6	13.8	13.8	15.1	15.1	15.1	4.1	4.1
d (FLOW DEPTH IN FEET)	1.64	1.27	1.64	1.27	1.47	1.18	0.9	1.19	2.03	1.42	2.05	2.21	2.55	1.35	1.54
BOTTOM WIDTH: DEPTH RATIO (12:1 MAX)	5.86	7.58	5.86	7.58	2.79	3.47	4.6	8.1	6.8	9.7	7.4	6.8	5.9	3.0	2.7
A (AREA IN SF)	21.07	15.36	21.07	15.36	10.35	7.62	5.31	14.26	36.26	23.63	39.36	43.14	51.51	9.18	11.06
R (HYDRAULIC RADIUS)	1.25	1.01	1.25	1.01	0.97	0.81	0.65	0.96	1.58	1.17	1.62	1.73	1.94	0.91	1.01
S (BED SLOPE, FT/FT) *	0.008	0.02	0.008	0.02	0.015	0.035	0.018	0.040	0.010	0.035	0.016	0.025	0.015	0.025	0.015
VEGETATIVE LINING RETARDANCE	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0,032	0.032	0.032	0.032	0.032	0.032	0.032
V (AT FLOW DEPTH d, FPS)	4.81	6.60	4.81	6.60	5.57	7.57	4.7	9.0	6.3	9.7	8.1	10.6	8.9	6.9	5.7
Q (AT FLOW DEPTH d, CFS)	101.33	101.30	101.33	101.30	57.66	57.68	24.9	128.4	228.8	228.3	319.2	455.9	456.2	63.1	63.2
Qr (REQUIRED CAPACITY, CFS)	101.31	101.31	101.31	101.31	57.96	57.96	24.8	128.2	228.2	228.2	319.3	455.1	455.1	63.3	63.3
Sc (CRITICAL SLOPE)	0.01	0.02	0.01	0.02	0.02	0.02	0.018	0,016	0,013	0.015	0.013	0.013	0.013	0.016	0.016
.7Sc	0.01	0.01	0.01	0.01	0.01	0.01	0.013	0.011	0.009	0.010	0.009	0.009	0.009	0.012	0.011
1.3Sc	0.02	0.02	0.02	0.02	0.02	0.02	0.024	0.020	0.017	0.019	0.017	0.017	0.016	0.021	0.021
STABLE FLOW? (Y/N)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FREEBOARD (STABLE FLOW, FT)	0.41	0.32	0.41	0.32	0.37	0.30	0.23	0.30	0.51	0.36	0.51	0.55	0.64	0.34	0.39
MINIMUM REQUIRED FREEBOARD, FT	0.50	0.50	0.50	0.50	0.50	0.50	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
D (TOTAL DEPTH, FT)	2.14	1.77	2.14	1.77	1.97	1.68	1.40	1.69	2.54	1.92	2,56	2.76	3.19	1.85	2.04
PROVIDED DEPTH (FT)	2.50	2.50	2.50	2,50	2.00	2.00	2	2	2.6	2.6	2.6	3.2	3.2	2	2
d50 STONE SIZE (IN)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
DESIGN METHOD FOR PROTECTIVE ****		1			1			4	1	40000	1111	1			
LINING PERMISSIBLE VELOCITY (V) OR	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
SHEAR STRESS (S)				1											
Va (ALLOWABLE VELOCITY, FPS)+	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
td (SHEAR STRESS AT d, PSF)	0.82	1.58	0.82	1.58	1.38	2.58	1.01	2.97	1.27	3,10	2,05	3.45	2.39	2.11	1.44
τα (MAX ALLOWABLE, PSF)+	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9,80	9.80	9,80

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns.

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

PERIMETER CHANNEL DESIGN 100-year, 24 hour storm event flows

4B	4B	4C	4C	4D	4D	4E	4E	4F	4F	5	5	6	6	7
ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB
21.92	20.84	22.44	23.48	25,80	24.14	26.03	27.70	27.40	29.25	17.96	15.80	12.92	14.10	8.62
19.92	18.84	20.44	21.48	23.66	22.14	23.84	25.18	24.94	26.42	15.96	13.80	10.92	12.10	6.62
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
13.8	13.8	13.8	13.8	15.1	15.1	15.1	15.1	15.1	15.1	9.6	9.6	8.3	8.3	2.8
1.53	1.26	1.66	1.92	2.14	1.76	2.185	2.52	2.46	2.83	1.59	1.05	0.65	0.95	0.96
9.0	11.0	8.3	7.2	7.1	8.6	6.9	6.0	6.1	5.3	6.0	9.1	12.7	8.7	2.9
25.80	20.56	28.42	33.87	41.47	32.77	42.54	50.75	49.25	58.75	20.32	12.29	6.28	9.70	4.50
1.25	1.06	1.34	1.51	1.68	1.43	1.71	1.92	1.89	2.12	1.22	0.86	0.56	0.77	0.64
0.015	0.030	0.025	0.015	0.015	0.030	0.025	0.015	0.025	0.015	0.014	0.060	0,110	0.030	0.030
NA	NA	NA	NA.	NA	NA	NA	NA.	NA						
0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
6.6	8.4	8.9	7.5	8.0	10.2	10.5	8.8	11.2	9.4	6.3	10.3	10.5	6.8	6.0
170.2	171.7	253.5	253.9	333.5	334.0	446.8	446.6	552.2	550.8	127.2	126.3	65.7	65.7	26.8
170.6	170.6	253.3	253.3	333.2	333.2	446.0	446.0	552.1	552.1	126.2	126.2	65.7	65.7	26.8
0.014	0.015	0.014	0.014	0.013	0.014	0.013	0.013	0.013	0.012	0.015	0.016	0.019	0.017	0.019
0.010	0.011	0.010	0.009	0.009	0.010	0.009	0.009	0.009	0.009	0.010	0.011	0.013	0.012	0.013
0.019	0.020	0.018	0.018	0.017	0.018	0.017	0.016	0.016	0.016	0.019	0.021	0.024	0.022	0.024
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.38	0.32	0.42	0.48	0.54	0.44	0.55	0.63	0.62	0.71	0.40	0.26	0.16		0.24
0.5	0.5	0.5	0,5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
2.03	1.76	2.16	2.42	2.68	2.26	2.73	3.15	3.08	3.54	2.09	1.55	1.15	1.45	1.46
2	2	2.5	2,5	2.8	2.8	3.3	3.3	3.5	3.5	2.2	2.2	2	2	2
n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
S	s	s	s	S	S	s	s	s	s	s	s	S	s	s
17.9	17.0	17.0	17.2	17.9	17.0	17.0	17.0	17.0	17.0	17.2	17.0	17.0	47.0	17.2
					_									
		_												1.79
	ACB 21.92 19.92 2 13.8 1.53 9.0 25.80 1.25 0.015 NA 0.032 6.6 170.2 170.6 0.014 0.010 0.019 Y N/A 0.38 0.5 2.03 2 n/a	ACB ACB 21.92 20.84 19.92 18.84 2 2 2 13.8 13.8 1.53 1.26 9.0 11.0 25.80 20.56 1.25 1.06 0.015 0.030 NA NA 0.032 0.032 6.6 8.4 170.2 171.7 170.6 170.6 0.014 0.015 0.010 0.011 0.019 0.020 Y N/A N/A 0.38 0.32 0.5 0.5 2.03 1.76 2 2 n/a n/a S S 17.2 17.2 1.43 2.36	ACB ACB ACB 21.92 20.84 22.44 19.92 18.84 20.44 2 2 2 2 13.8 13.8 13.8 1.53 1.26 1.66 9.0 11.0 8.3 25.80 20.56 28.42 1.25 1.06 1.34 0.015 0.030 0.025 NA NA NA NA 0.032 0.032 0.032 6.6 8.4 8.9 170.2 171.7 253.5 170.6 170.6 253.3 0.014 0.015 0.014 0.010 0.011 0.010 0.019 0.020 0.018 Y Y Y N/A N/A N/A 0.38 0.32 0.42 0.5 0.5 0.5 2.03 1.76 2.16 2 2 2.5 n/a n/a n/a S S S 17.2 17.2 17.2 17.2 1.43 2.36 2.59	ACB ACB ACB ACB 21.92 20.84 22.44 23.48 19.92 18.84 20.44 21.48 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ACB ACB ACB ACB ACB 21.92 20.84 22.44 23.48 25.80 19.92 18.84 20.44 21.48 23.66 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ACB 1.1.2 11.0 11.0 </td <td>ACB ACB 11.0 11.0 11.0<td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td><td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td><td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td><td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td><td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td><td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td><td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td></td>	ACB 11.0 11.0 11.0 <td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td> <td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td> <td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td> <td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td> <td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td> <td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td> <td>ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB</td>	ACB	ACB	ACB	ACB	ACB	ACB	ACB

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns.

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

PERIMETER CHANNEL DESIGN 100-year, 24 hour storm event flows

CHANNEL OR CHANNEL SECTION	7	8A	8A	8B	8B	8C	9A	9B	9B	9C	10	10	FC AR Channel	FC AR Channe
PROTECTIVE LINING **	ACB	Grass	Grass											
CHANNEL TOP WIDTH @ D (FT)	7.40	10.02	10.98	17.00	18.40	28.51	14.94	17.80	19.95	24.06	17.56	16,52	8.05	9.35
CHANNEL TOP WIDTH @ d (FT)	5.40	8.02	8.98	15,00	16.38	26.39	12.94	15.80	17.88	22.01	15.56	14.52	5.55	6.85
CHANNEL SIDE SLOPES (H:1V)	2	2	2	2	2	2	2	2	2	2	2	2	2.5	2.5
CHANNEL BOTTOM WIDTH (FT)	2.8	2.8	2.8	8.3	8.3	17.9	8.3	9.6	9.6	13.8	9.6	9.6	4	4
d (FLOW DEPTH IN FEET)	0.65	1.30	1.55	1.67	2.02	2.12	1.16	1.55	2.07	2.05	1.49	1.23	0.31	0.57
BOTTOM WIDTH: DEPTH RATIO (12:1 MAX)	4.3	2.1	1.8	5.0	4.1	8.4	7.2	6.2	4.6	6.7	6.4	7.8	12.9	7.0
A (AREA IN SF)	2.66	7.06	9.11	19.50	24.92	47.02	12.32	19.69	28.44	36.73	18.74	14.83	1.48	3.09
R (HYDRAULIC RADIUS)	0.47	0.82	0.94	1.24	1,44	1.72	0.91	1.19	1.51	1.60	1.15	0.98	0.26	0.44
S (BED SLOPE, FT/FT) *	0.130	0.040	0.020	0.030	0.015	0.020	0.020	0.020	0.007	0.007	0.030	0.060	0.080	0.080
VEGETATIVE LINING RETARDANCE	NA	NA	NA	NA	NA.	NA	NA							
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.050	0.050
V (AT FLOW DEPTH d, FPS)	10.1	8.1	8.3	9.3	7.2	9.4	6.2	7.4	5.1	5.3	8.8	11.2	3.4	4.8
Q (AT FLOW DEPTH d, CFS)	26.8	57.3	57.3	180.5	180.5	442.6	76.2	145.3	145.3	195.1	165.7	166.7	5.1	15.0
Qr (REQUIRED CAPACITY, CFS)	26.8	57.3	57.3	180.5	180.5	444.6	76.4	145.3	145.3	195.1	164.9	164.9	5.0	15.0
Sc (CRITICAL SLOPE)	0.020	0.017	0.016	0.015	0.014	0.013	0.016	0.015	0.014	0.013	0.015	0.016	0.058	0.049
.7Sc	0.014	0.012	0.012	0.010	0.010	0.009	0.011	0.010	0.010	0.009	0.010	0.011	0.041	0.035
1.3Sc	0.026	0.022	0.021	0.019	0.018	0.017	0.021	0.019	0.018	0.017	0.019	0.020	0.076	0.064
STABLE FLOW? (Y/N)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A	N/A												
FREEBOARD (STABLE FLOW, FT)	0.16	0.33	0.39	0.42	0.50	0.53	0.29	0.39	0.52	0.51	0.37	0.31	0.08	0.14
MINIMUM REQUIRED FREEBOARD, FT	0.5	0.5	0.5	0.5	0.5	0,5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
D (TOTAL DEPTH, FT)	1.15	1.80	2.05	2.17	2.52	2.65	1.66	2.05	2.59	2.56	1.99	1.73	0.81	1.07
PROVIDED DEPTH (FT)	2	2	2	2	2	2.2	2.6	2.6	2.6	2.6	2	2	1.5	1.5
d50 STONE SIZE (IN)	n/a	n/a												
DESIGN METHOD FOR PROTECTIVE ****														102
LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S)	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Va (ALLOWABLE VELOCITY, FPS)+	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
td (SHEAR STRESS AT d, PSF)	5.27	3.26	1.93	3.13	1.89	2.65	1.45	1.93	0.90	0.90	2.79	4.61	1,55	2.85
τα (MAX ALLOWABLE, PSF)+	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80	9.80

^{*} Slopes may not be averaged...

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns.

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

+ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

DOWNCHUTE CHANNEL DESIGN 25-year, 24 hour storm event flows

CHANNEL OR CHANNEL SECTION	DC-1	DC-1	DC-2	DC-2	DC-3	DC-3	DC-4	DC-4	DC-5	DC-5	DC-6	DC-6	DC-7	DC-7	DC-8
PROTECTIVE LINING **	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB							
CHANNEL TOP WIDTH @ D (FT)	18.62	17.78	17.12	16.28	21.22	20.38	17.00	16.20	17.04	16.24	21.18	20.34	21.10	20.34	21.02
CHANNEL TOP WIDTH @ d (FT)	17.42	16.58	15,92	15.08	20.02	19.18	15.80	15.00	15.84	15.04	19.98	19.14	19.90	19.14	19.82
CHANNEL SIDE SLOPES (H:1V)	2.00	2.00	2.00	2.00	2.00	2.00	2	2	2	2	2	2	2	2	2
CHANNEL BOTTOM WIDTH (FT)	15.30	15.30	13.80	13.80	17.90	17.90	13.8	13.8	13.8	13.8	17.9	17.9	17.9	17.9	17.9
d (FLOW DEPTH IN FEET) to meet Qr	0.53	0.32	0.53	0.32	0.53	0.32	0.5	0.3	0.51	0.31	0.52	0.31	0.501	0.31	0.48
BOTTOM WIDTH: DEPTH RATIO (12:1 MAX)	28.87	47.81	26.04	43.13	33.77	55.94	27.6	46.0	27.1	44.5	34.4	57.7	35.7	57.7	37.3
A (AREA IN SF)	8.67	5.10	7.88	4.62	10.05	5.93	7.40	4.32	7.56	4.47	9.85	5.74	9.47	5.74	9.05
R (HYDRAULIC RADIUS)	0.49	0.30	0.49	0.30	0.50	0.31	0.46	0.29	0.47	0.29	0.49	0.30	0.47	0.30	0.45
S (BED SLOPE, FT/FT) *	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060
VEGETATIVE LINING RETARDANCE	NA	NA	NA	NA	NA	NA	NA	NA							
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
V (AT FLOW DEPTH d, FPS)	7.08	12.08	7.04	12.04	7.12	12.14	6.8	11.6	6.9	11.8	7.0	11.9	6.9	11.9	6.7
Q (AT FLOW DEPTH d, CFS)	61.36	61.64	55.46	55,65	71.80	72.01	50.3	49.9	52.0	52.8	69.3	68.3	65.1	68.3	60.6
Qr (REQUIRED CAPACITY, CFS)	60.95	60.95	54.36	54.36	70.96	70.96	49.9	49.9	51.6	51.6	68.6	68.6	65.0	65.0	59.6
Sc (CRITICAL SLOPE)	0.02	0.02	0.02	0.02	0.02	0.02	0.020	0.023	0.019	0.023	0.019	0.023	0.019	0.023	0.020
.7Sc	0.01	0.02	0.01	0.02	0.01	0.02	0.014	0.016	0.014	0.016	0.013	0.016	0.014	0.016	0.014
1.3Sc	0.02	0.03	0.03	0.03	0.02	0.03	0.025	0.030	0.025	0.029	0.025	0.029	0.025	0.029	0.026
STABLE FLOW? (Y/N)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A							
FREEBOARD (STABLE FLOW, FT)	0.13	0.08	0.13	0.08	0.13	0.08	0.13	80.0	0.13	0.08	0.13	0.08	0.13	0.08	0.12
MINIMUM REQUIRED FREEBOARD, FT	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
D (TOTAL DEPTH, FT)	0.83	0.62	0.83	0.62	0.83	0.62	0.80	0.60	0.81	0.61	0.82	0.61	0.80	0.61	0.78
PROVIDED DEPTH (FT)	1.00	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
d50 STONE SIZE (IN)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a							
DESIGN METHOD FOR PROTECTIVE ****															
LINING PERMISSIBLE VELOCITY (V) OR	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
SHEAR STRESS (S)								Lancon Lancon			1 - 15				
Va (ALLOWABLE VELOCITY, FPS)+	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2
td (SHEAR STRESS AT d, PSF)	1.98	6.59	1.98	6.59	1.98	6.59	1.87	6.18	1.91	6.38	1.95	6.38	1.88	6.38	1.80
τa (MAX ALLOWABLE, PSF)+	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns.

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

DOWNCHUTE CHANNEL DESIGN 25-year, 24 hour storm event flows

CHANNEL OR CHANNEL SECTION	DC-8	DC-9	DC=9	DC-10	DC-10	DC-20	DC-20	DC-21	DC-21	DC-22	DC-22	DC-23	DC-23
PROTECTIVE LINING **	ACB												
CHANNEL TOP WIDTH @ D (FT)	20.26	15.68	14.84	19.70	18.90	14.08	13.32	18.30	17,50	12.60	11.88	14.28	13.48
CHANNEL TOP WIDTH @ d (FT)	19.06	14.48	13.64	18.50	17,70	12.88	12.12	17.10	16.30	11.40	10.68	13.08	12.28
CHANNEL SIDE SLOPES (H:1V)	2	2	2	2	2	2	2	2	2	2	2	2	2
CHANNEL BOTTOM WIDTH (FT)	17.9	12.4	12.4	16.5	16.5	11	11	15.1	15.1	9.6	9.6	11	11
d (FLOW DEPTH IN FEET) to meet Qr	0.29	0.52	0.31	0.5	0.3	0.47	0.28	0.5	0.3	0.45	0.27	0.52	0.32
BOTTOM WIDTH: DEPTH RATIO (12:1 MAX)	61.7	23.8	40.0	33.0	55.0	23.4	39.3	30.2	50.3	21.3	35.6	21.2	34.4
A (AREA IN SF)	5.36	6.99	4.04	8.75	5.13	5.61	3.24	8.05	4.71	4.73	2.74	6.26	3.72
R (HYDRAULIC RADIUS)	0.28	0.47	0.29	0.47	0.29	0.43	0.26	0.46	0.29	0.41	0.25	0.47	0.30
S (BED SLOPE, FT/FT) *	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33
VEGETATIVE LINING RETARDANCE	NA	NA	NA	NA	NA.	NA							
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
V (AT FLOW DEPTH d, FPS)	11.4	6.9	11.8	6.8	11.6	6.5	11.0	6.8	11.6	6.2	10.7	6.9	11.9
Q (AT FLOW DEPTH d, CFS)	61.1	48.4	47.5	59.9	59.6	36.3	35.6	54.9	54.6	29.5	29.2	43.0	44.5
Qr (REQUIRED CAPACITY, CFS)	59.6	47.3	47.3	58.9	58.9	35.8	35.8	53.3	53.3	29.3	29.3	42.9	42.9
Sc (CRITICAL SLOPE)	0.023	0.019	0.023	0.019	0.023	0.020	0.023	0.020	0.023	0.020	0.024	0.020	0.023
.7Sc	0.016	0.014	0.016	0.014	0.016	0.014	0.016	0.014	0.016	0.014	0.017	0.014	0.016
1.3Sc	0.030	0.025	0.030	0.025	0.030	0.026	0.031	0.025	0.030	0.027	0.031	0.025	0.029
STABLE FLOW? (Y/N)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A												
FREEBOARD (STABLE FLOW, FT)	0.07	0.13	0.08	0.13	0.08	0.12	0.07	0.13	0.08	0.11	0.07	0.13	0.08
MINIMUM REQUIRED FREEBOARD, FT	0.30	0.30	0,30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
D (TOTAL DEPTH, FT)	0.59	0.82	0.61	0.80	0.60	0.77	0.58	0.80	0.60	0.75	0.57	0.82	0.62
PROVIDED DEPTH (FT)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
d50 STONE SIZE (IN)	n/a												
DESIGN METHOD FOR PROTECTIVE **** LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S)	S	s	S	s	S	s	s	s	S	S	s	S	S
Va (ALLOWABLE VELOCITY, FPS)+	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1
td (SHEAR STRESS AT d, PSF)	5.97	1.95	6.38	1.87	6.18	1.76	5.77	1.87	6.18	1.68	5.56	1.95	6.59
ta (MAX ALLOWABLE, PSF)+	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns.

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

CHANNEL OR CHANNEL SECTION	DC-1	DC-1	DC-2	DC-2	DC-3	DC-3	DC-4	DC-4	DC-5	DC-5	DC-6	DC-6	DC-7	DC-7	DC-8
PROTECTIVE LINING **	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB	ACB
CHANNEL TOP WIDTH @ D (FT)	19.26	18.18	17.76	16.68	21.90	20.78	17.64	16.60	17.68	16.64	21.82	20.74	21.74	20.70	21.70
CHANNEL TOP WIDTH @ d (FT)	18.06	16.98	16.56	15.48	20.70	19.58	16.44	15.40	16.48	15.44	20.62	19.54	20.54	19.50	20.50
CHANNEL SIDE SLOPES (H:1V)	2.00	2.00	2.00	2.00	2.00	2.00	2	2	2	2	2	2	2	2	2
CHANNEL BOTTOM WIDTH (FT)	15.30	15.30	13.80	13.80	17.90	17.90	13.8	13.8	13.8	13.8	17.9	17.9	17.9	17.9	17.9
d (FLOW DEPTH IN FEET)	0.69	0.42	0.69	0.42	0.70	0.42	0.66	0.4	0.67	0.41	0.68	0.41	0.66	0.4	0.65
BOTTOM WIDTH: DEPTH RATIO (12:1 MAX)	22,17	36.43	20.00	32.86	25.57	42.62	20.9	34.5	20.6	33.7	26.3	43.7	27.1	44.8	27.5
A (AREA IN SF)	11.51	6.78	10.47	6.15	13.51	7.87	9.98	5.84	10.14	5.99	13.10	7.68	12.69	7.48	12.48
R (HYDRAULIC RADIUS)	0.63	0,39	0,62	0.39	0.64	0.40	0.60	0.37	0.60	0.38	0.63	0.39	0.61	0.38	0.60
S (BED SLOPE, FT/FT) *	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060	0.33	0.060
VEGETATIVE LINING RETARDANCE	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
V (AT FLOW DEPTH d, FPS)	8.32	14.35	8.27	14.29	8.47	14.43	8.1	13.9	8.1	14.1	8.3	14.2	8.2	14.0	8.1
Q (AT FLOW DEPTH d, CFS)	95.80	97.29	86.66	87.88	114.41	113.60	80.4	81.0	82.4	84.4	108.9	109.1	103.6	104.7	101.0
Qr (REQUIRED CAPACITY, CFS)	94.79	94.79	85.88	85.88	113.02	113.02	80.1	80.1	82.9	82.9	107.4	107.4	103.6	103.6	100.2
Sc (CRITICAL SLOPE)	0.02	0.02	0.02	0.02	0.02	0.02	0.018	0.021	0.018	0.021	0.018	0.021	0.018	0.021	0.018
.7Sc	0.01	0.01	0.01	0.01	0.01	0.01	0.013	0.015	0.013	0.015	0.012	0.014	0.013	0.015	0.013
1.3Sc	0.02	0.03	0.02	0.03	0.02	0.03	0.023	0.027	0.023	0.027	0.023	0.027	0.023	0.027	0.023
STABLE FLOW? (Y/N)	Y	Y	Y	Υ	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FREEBOARD (STABLE FLOW, FT)	0.17	0.11	0.17	0.11	0.18	0.11	0.17	0.10	0.17	0.10	0.17	0.10	0.17	0.10	0.16
MINIMUM REQUIRED FREEBOARD, FT	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
D (TOTAL DEPTH, FT)	0.99	0.72	0.99	0.72	1.00	0.72	0.96	0.70	0.97	0.71	0.98	0.71	0.96	0.70	0.95
PROVIDED DEPTH (FT)	1.00	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
d50 STONE SIZE (IN)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
DESIGN METHOD FOR PROTECTIVE ****				111		1	-								
LINING PERMISSIBLE VELOCITY (V) OR	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
SHEAR STRESS (S)					-				U. Y.	The state of	1	11.46			
Va (ALLOWABLE VELOCITY, FPS)+	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2
td (SHEAR STRESS AT d, PSF)	2.58	8.65	2.58	8.65	2,62	8,65	2.47	8.24	2.51	8.44	2.55	8.44	2.47	8.24	2.43
τa (MAX ALLOWABLE, PSF)+	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50	9.80	7.50

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns.

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

DOWNCHUTE CHANNEL DESIGN 100-year, 24 hour storm event flows

CHANNEL OR CHANNEL SECTION	DC-8	DC-9	DC=9	DC-10	DC-10	DC-20	DC-20	DC-21	DC-21	DC-22	DC-22	DC-23	DC-23
PROTECTIVE LINING **	ACB												
CHANNEL TOP WIDTH @ D (FT)	20.66	16.28	15.24	20.30	19.30	14.68	13.72	18.90	17.90	13.16	12.24	14.88	13.84
CHANNEL TOP WIDTH @ d (FT)	19.46	15.08	14.04	19.10	18.10	13.48	12.52	17.70	16.70	11.96	11.04	13.68	12.64
CHANNEL SIDE SLOPES (H:1V)	2	2	2	2	2	2	2	2	2	2	2	2	2
CHANNEL BOTTOM WIDTH (FT)	17.9	12.4	12,4	16,5	16.5	11	11	15.1	15.1	9.6	9.6	11	11
d (FLOW DEPTH IN FEET)	0.39	0.67	0.41	0.65	0.4	0.62	0.38	0.65	0.4	0.59	0.36	0.67	0.41
BOTTOM WIDTH: DEPTH RATIO (12:1 MAX)	45.9	18.5	30.2	25.4	41.3	17.7	28.9	23.2	37.8	16.3	26.7	16.4	26.8
A (AREA IN SF)	7.29	9.21	5.42	11.57	6.92	7.59	4.47	10.66	6.36	6.36	3.72	8.27	4.85
R (HYDRAULIC RADIUS)	0.37	0.60	0.38	0.60	0.38	0.55	0.35	0.59	0.38	0.52	0.33	0.59	0.38
S (BED SLOPE, FT/FT) *	0.33	0.060	0.33	0.060	0.33	0,060	0.33	0.060	0.33	0.060	0.33	0.060	0.33
VEGETATIVE LINING RETARDANCE	NA												
n (MANNING'S COEFFICIENT) **	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
V (AT FLOW DEPTH d, FPS)	13.8	8.1	14.0	8.1	14.0	7.6	13.3	8.0	13.9	7.4	12.8	8.0	13.9
Q (AT FLOW DEPTH d, CFS)	100.3	74.3	76.0	93.2	96.6	58.0	59.4	85.5	88.5	46.8	47.5	66.2	67.5
Qr (REQUIRED CAPACITY, CFS)	100.2	74.7	74.7	93.0	93.0	57.4	57.4	85.6	85.6	47.1	47.1	65.7	65.7
Sc (CRITICAL SLOPE)	0.021	0.018	0.021	0.018	0.021	0.019	0.021	0.018	0.021	0.019	0.022	0.018	0.021
.7Sc	0.015	0.013	0.015	0.013	0.015	0.013	0.015	0.013	0.015	0.013	0.015	0.013	0.015
1.3Sc	0.027	0.023	0.027	0.023	0.027	0.024	0.028	0.023	0.027	0.025	0.028	0.024	0.027
STABLE FLOW? (Y/N)	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y
FREEBOARD (UNSTABLE FLOW, FT)	N/A												
FREEBOARD (STABLE FLOW, FT)	0.10	0.17	0.10	0.16	0.10	0.16	0.10	0.16	0.10	0.15	0.09	0.17	0.10
MINIMUM REQUIRED FREEBOARD, FT	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
D (TOTAL DEPTH, FT)	0.69	0.97	0.71	0.95	0.70	0.92	0.68	0.95	0.70	0.89	0.66	0.97	0.71
PROVIDED DEPTH (FT)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
d50 STONE SIZE (IN)	n/a												
DESIGN METHOD FOR PROTECTIVE ****	- 1	11					-						
LINING PERMISSIBLE VELOCITY (V) OR	S	S	S	S	S	S	S	S	S	S	S	S	S
SHEAR STRESS (S)					100		1.0	1000	3.5		1. %	7	X -4 *1
Va (ALLOWABLE VELOCITY, FPS)+	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1	17.2	15.1
τd (SHEAR STRESS AT d, PSF)	8.03	2.51	8.44	2.43	8.24	2.32	7.82	2.43	8.24	2.21	7.41	2.51	8.44
τa (MAX ALLOWABLE, PSF)+	9.80	7.50	9.80	7.50	9.80	7,50	9.80	7.50	9.80	7.50	9.80	7.50	9.80

^{*} Slopes may not be averaged.

^{**} For vegetated channels, provide data for temporary linings and vegetated conditions in separate columns

^{***} Minimum Freeboard, F, is 0.5 feet.

^{****} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is recommended for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

⁺ Maximum Allowable Velocity (fps) and Maximum Allowable Shear Stress (psf) are taken from cable concrete manufacturer.

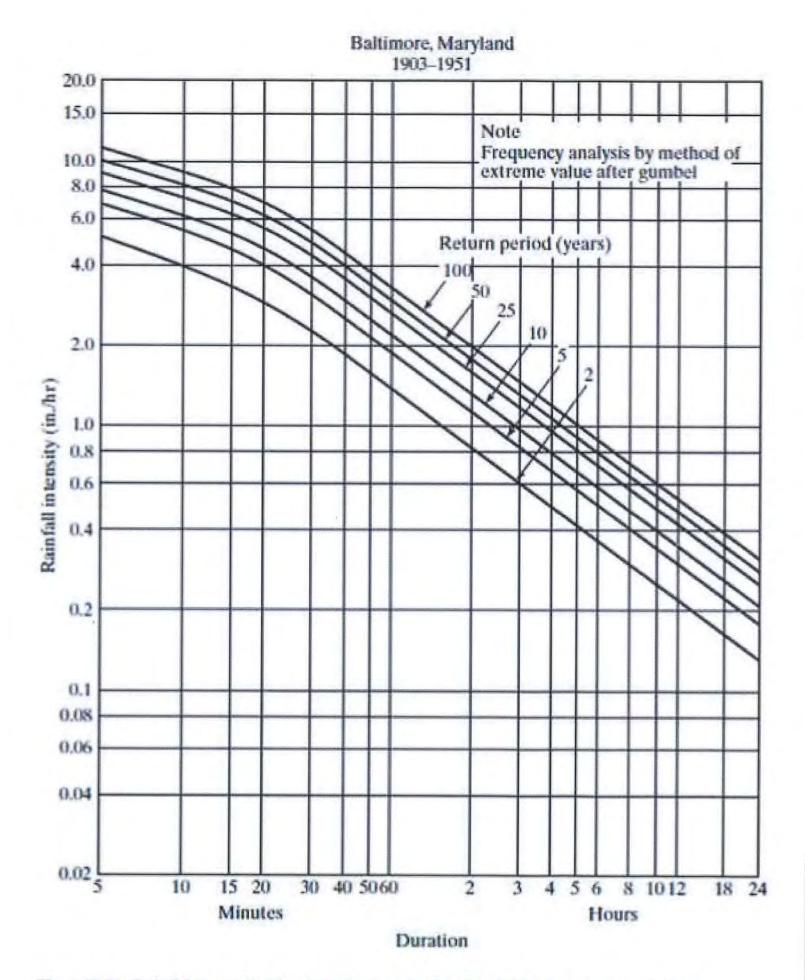


Figure 2.4 Rainfall intensity-duration-frequency (National Weather Service, 1961).

Title: CHANNE	LDESIGN	Site: CHESAPEAKE TERRACE	DATE: July 17, 2020
Prepared by:	VEF	Telephone Number:	Sheet 1 of 1

-

		Design Calc	ulations:				PROPOSEI	CHANNE	L DESIGN									
Chan- nel Name	Design Storm (years)	Peak Discharge (cfs)	Channel Bed Slope (ft/ft)	Free- board (ft)	Channel Lining	Manning Coeff.	Channel Bottom Width (ft)	Left Side Slopes Inclintion	Right Side Slopes Inclintion	Flow Area (sq.ft.)	Rh = A/P	Flow Depth (ft)	Top How Width (ft.)	Flow Velocity (ft/s)	Actual Q (cfs)	Channel Depth (ft)	/ith Freeboa Top Channel Width (ft)	Q Available (cfs)
Terrace	25	6.2	0.020	0,19	Grass	0.078	0.00	10.00	3.00	4.26	0.40	0.81	10,53	1.46	6.2	1.00	13.0	10.9
Terrace	25	6.2	0.030	0.30	Grass	0.065	0.00	10.00	3.00	3.19	0.34	0.70	9.10	1.95	6.2	1.00	13.0	16.0
Terrace	25	2.7	0.020	0.41	Grass	0.078	0,00	10.00	3.00	2.26	0.29	0.59	7.67	1.18	2.7	1.00	13.0	10.9
Terrace	25	2,7	0.030	0.49	Grass	0.065	0,00	10.00	3.00	1.69	0.25	0.51	6,63	1.58	2.7	1.00	13.0	16.0
AR Channel	25	3.3	0.040	1.06	Grass	0.080	3.00	3.00	2.00	1.83	0.31	0.45	5.23	1.81	3.3	1,50	10,5	35.4
AR Channel	25	3.3	0.080	1.13	Grass	0.080	3.00	3.00	2.00	1.45	0.30	0.37	4.85	2.31	3.3	1.50	10.5	50.0

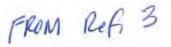


TABLE 7-3 Runoff coefficients for the Rational method

Description of Area	Runoff Coefficients	
Business		
Downtown	0.70-0.95	
Neighborhood	0.50-0.70	
Residential		
Single-family	0.30-0.50	
Multiunits, detached	0.40-0.60	
Multiunits, attached	0.60-0.75	
Residental (suburban)	0.25-0.40	
Apartment	0.50-0.70	
Industrial	2012 2013	
Light	0.50-0.80	
Heavy	0.60-0.90	
Parks, cemeteries	0.10-0.25	
Playgrounds	0.20-0.35	
Railroad yard	0.20-0.35	
Unimproved	0.10-0.30	

It often is desirable to develop a composite runoff coefficient based on the percentage of different types of surface in the drainage area. This procedure often is applied to typical "sample" blocks as a guide to selection of reasonable values of the coefficient for an entire area. Coefficients with respect to surface type currently in use are:

Character of Surface	Runoff Coefficients
Pavement	
Asphaltic and Concrete	0.70-0.95
Brick	0.70-0.85
Roofs	0.75-0.95
Lawns, sandy soil	
Flat, 2%	0.05-0.10
Average, 2 to 7%	0.10-0.15
Steep, 7%	-0.15-0.20
Lawns, heavy soil	
Flat, 2%	0.13-0.17
Average, 2 to 7%	0.18-0.22
> Steep, 7%	0.25-0.35

The coefficients in these two tabulations are applicable for storms of 5- to 10-year frequencies. Less frequent, higher intensity storms will require the use of higher coefficients because infiltration and other losses have a proportionally smaller effect on runoff. The coefficients are based on the assumption that the design storm does not occur when the ground surface is frozen.

Source: Design and Construction of Sanitary and Storm Sewers, American Society of Civil Engineers, New York, p. 332, 1969.

7.3.1 Runoff Coefficients for Nonhomogeneous Areas

The runoff coefficients of Table 7-2 reflect the effect of land use, soil, and slope on runoff potential. The use of Eq. 7-4 assumes that the watershed is homogeneous in these characteristics so that the runoff coefficient used provides unbiased estimates.

TABLE 7a Maximum Permissible Velocities for Channels Lined with Vegetation

Slope Range

Percent

5-10

5-10

<5

>10

<5

<5

<5

Orberence	4
ith Vegetation	

5

4

3

4

3

2.5

2.5

Erosion

resistant Soil1

73

6³

5

5

4

3.5

3.5

Whereve calculation after esta Easily Eroded Soil 2 temporar manufac roughne and use Enginee

Mannir

¹Cohesive (clayey) fine grain soils and coarse grain soils with a plasticity index OF 10 TO 40 (CL,CH,SC and GC). Soils with K values less than 0.37.

²Soils with K values greater than 0.37.

Cover

Kentucky Bluegrass

Reed Canarygrass

Serecea Lespedeza Weeping Lovegrass

Temporary cover only

Tall Fescue

Redtop Red Fescue

Annuals

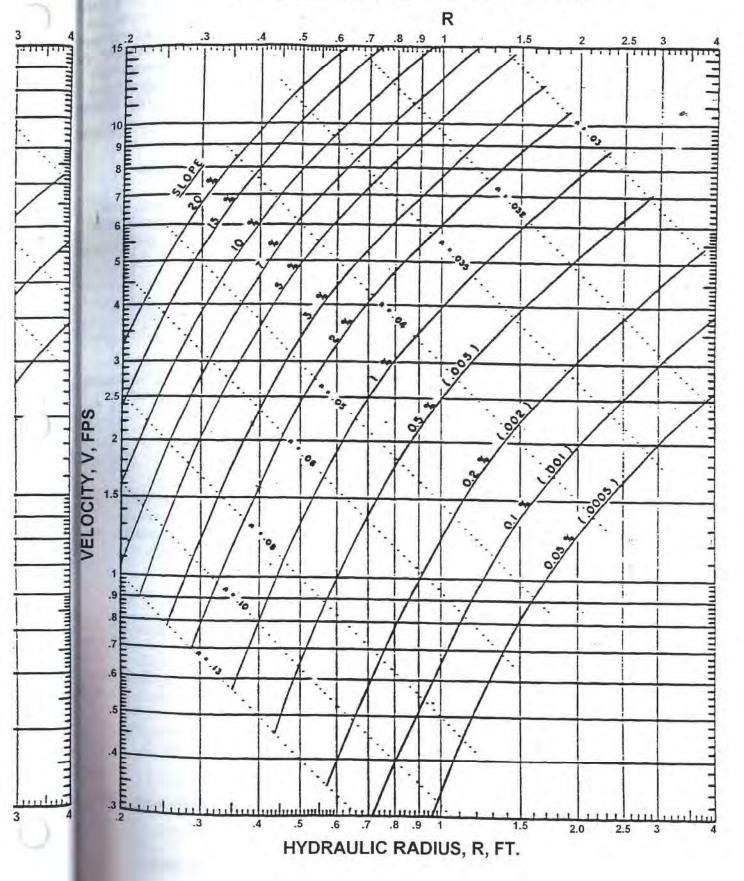
Sudangrass

Grass Mixture

³Use velocities exceeding 5 ft/sec only where good cover and proper maintenance can be obtained.

ADDITIONAL NOTES REGARDING THE USE OF TABLE 7a

- 1. A velocity of 3.0 ft/sec should be the maximum if because of shade, soils or climate, only a sparse cover can be established or maintained.
- 2. A velocity of 3.0 to 4.0 ft/sec should be used under normal conditions if the vegetation is to be established by seeding.
- 3. A velocity of 4.0 to 5.0 ft/sec should be used only in areas if a dense, vigorous sod is obtained quickly or if water can be diverted out of the waterway while vegetation is being established.
- 4. A velocity of 5.0 to 6.0 ft/sec may be used on well established, good quality sod. Special maintenance may be required.
- 5. A velocity of 6.0 to 7.0 ft/sec may be used only on established, excellent quality sod, and only under special circumstances in which flow cannot be handled at a lower velocity. Under these conditions, special maintenance and appurtenant structures will be required.
- 6. If stone centers, or other erosion resistant materials supplement the vegetative lining, the velocities in the above table may be increased by 2.0 ft/sec.
- 7. When base flow exists, a rock lined low flow channel should be designed and incorporated into the vegetative lined channel section.


Lini Jute N Curlec Synthe

The ma Mannin with the the cha increa (0.10 ft

> NSA REERER

from Ref 4

Figure 3c // "n" Values for Vegetated Channels, D Retardance

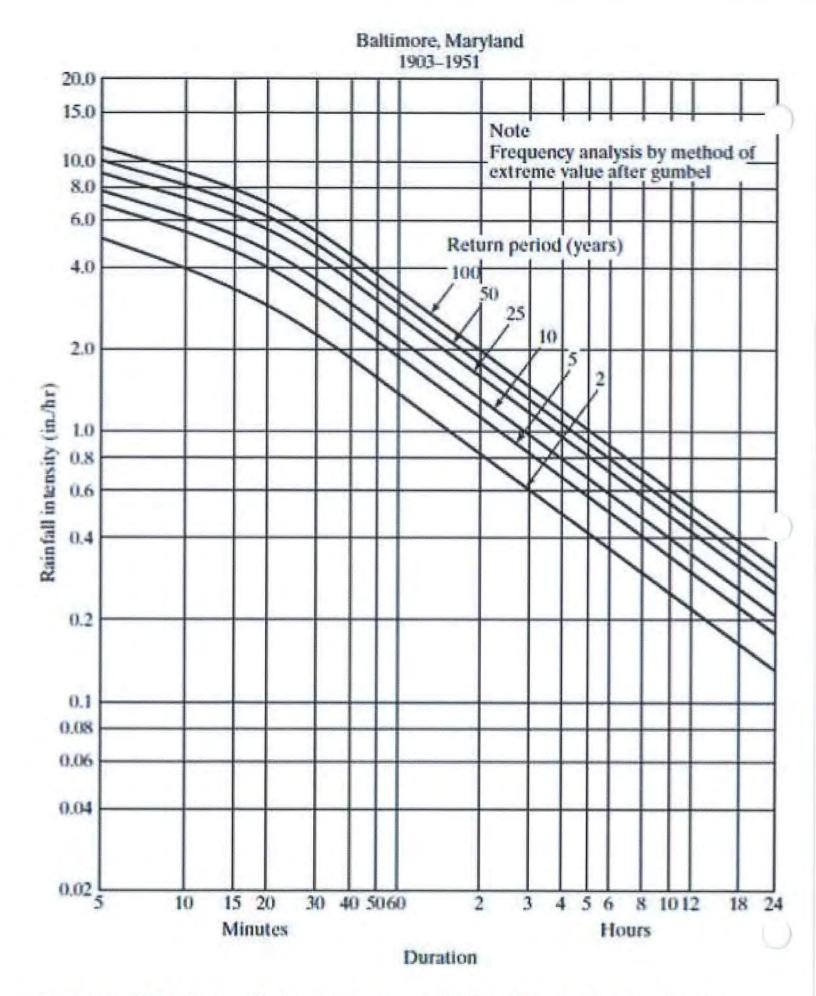


Figure 2.4 Rainfall intensity-duration-frequency (National Weather Service, 1961).

Jum Betheren for Cast for Carle lovel Control

Block 7 Cell (rehes) 12 and 14 (rehes)		CONTRACTOR		District of the last of the la	-	STATE	and designation of the last	AMERICAN			
L2 and	Type CC20	CC15.	Closed	Closed	CC45.05 Closed	CC98 OS Closed	CCIS	CC55 Open	CC35 OS	CC65 CS Open	CCSS OS Open
	1.13	203	2.48	3.83	275	4.06	232	3.58	202	3.92	4.84
	775	775	(7.75	775	15.79	15.78	1,75	775	15/78	15.78	15.79
	25	99	65	8.5	4.5	8.5	9	0.00	10	8.5	10.5
Submerged Weight (pounds)	2101	37.82	46.22	71.65	150.56	344.03	36.03	25 26	16.80	271.00	336.84
Level to the state of the state	3			A COLUMN TO A COLU							
tibical Shear Stress - Failure by Over-Turning - No Cable Interaction tibal Shear Stress - Failure by Silong - With Cable Interaction fixed Shear Stress - Failure by Silong - No Cable Interaction	10.1	18.1	25.3	27.1 34.2 20.7	21.6 12.8	51.4 40.8 24.1	27.5 16.6 9.9	26.0	113	32.6 19.8	663 403 238
Bed Stops 1 EH-TV (34 cagneed, - Failure by Over-Turning - No Cable interaction 0.667 Bed Stops 1 EH-TV (34 cagneed, - Failure by Stiding - With Cable Interaction 0.667 Bed Stops 1 EH-TV (34 cagneed, - Failure by Stiding - No Cable Interaction 0.697)	172	33	170	15.5 6.2 3.7	347	35.7 7.4 4.4	16.6	13.3 21.6 12.8	40.2 144 45	41.6	396 336 199
Bod Stope 24 fV (26.5 degrees) - Failure by Over-Turving - Na Cabbi interaction 0.500 Bod Stope 24 fV (26.5 degrees) - Failure by Stoing - With Cabe interaction 0.500 Bod Stope 24 fV (26.5 degrees) - Failure by Stoing - Na Cabbi interaction 0.500	37	18.5	195 82 48	12.7 7.5	352 80 47	403 151 8.9	203 15.0 8.9	17.5 28.2 18.7	5).8 15.4 91	50.1 29.1 17.2	360
Bed Stope 34-tV (16.5 degrees) - Falluse by Over-Turning - No Cable Interaction 0.333 Bed Stope 34-tV (16.5 degrees) - Falluse by Stding - With Cable Interaction 0.333 Bed Stope 34-tV (16.5 degrees) - Falluse by Stding - No Cable Interaction 0.333	223 58	21.2	12.7	22.1 19.6 11.6	41.5 12.4 7.3	254	23.4 15.7 9.3	21.2	6/7 ff.1 95	57.1 30.5 18.0	56.0 37.6 22.3
Bed Stope 4H-TV (14 degrees) - Fallute by Oxer-Turning - No Cable interaction 0.250 Sept 4H-TV (14 degrees) - Fallute by Silding - With Cable Interaction 0.250 Bed Stope 4H-TV (14 degrees) - Fallute by Silding - No Cable Interaction 0.250	69	12.4	152	23.4 23.4	42.9 14.8 8.8	47.0 79.0	24.7 16.0 9.5	22.8 24.7 14.6	10.4	59.8 31.0	28.3 22.7
Bed Sitge SH IV (11.3 degrees) - Fallure by Owir-Tumng - No Cable Interaction 0.200 Bed Sitge SH IV (11.3 degrees) - Fallure by Sliding - With Cable Interaction 0.200 Bed Sitges SH IV (11.3 degrees) - Fallure by Sliding - No Cable Interaction 0.200	7.5	22B 135 80	16.8 16.8	246	43.7	48.1 30.4 38.0	25.4 18.5 9.8	28.7 25.5 16.1	P 0 0	82.0 18.9	510 205 234
Make Metables above \$2.00m to second on recommendad.									4		
G.CCO. Level Back Macmann Velicotity - Feature by Ower-Turning - No Católe Interaction (3 000 Lovel Back Maximum Velicotity - Feature by Stidling - With Cabble Interaction (3 000 Lowe Bed Maximum Velicotity - Faiture by Stidling - No Cabble Interaction (3 000 000)	260 17.4 13.5	25.9	26.3	27.2 32.2 25.0	38.0	39.0	19.7 19.7 15.2	22.3	800 4	27.4	30.5
Bed Stope 15H1V (34 degrees) - Falline by Over-Turing - No Cobbe Interaction 0.657 Bed Stope 15H1V (34 degrees) - Falline by Shibing - With Cabbe Interaction 0.667 Bed Stope 15H1V (34 degrees) - Falline by Siding - No Cabbe Interaction 0.657	75	20.5	23.6 11.1	12.7	30,5 10.9 8.4	31.2 150	176 170 151	158 241 163	310	28.0	20.2
848 Slope 2H IV (26.8 degrees) - Fallare by Over-Turning - No Cable Interaction 0.500 Bed Slope 2H IV (26.5 degrees) - Fallare by Silving - With Cable Interaction 0.500 Bed Slope 2H IV (26.5 degrees) - Fallare by Silving - No Cable Interaction 0.500	234 106	14.2	167 167	22.6 18.5	32.5 16.5 11.9	33.2	22.0 20.3 15.6	25.2	200	30.8 28.3 21.8	301
Bed Stope 3H:FV [18.5 degrees) - Fallure by Over-Turning - No Cable Interaction 0.333 Bed Stope 3H:FV [18.5 degrees) - Fallure by Stiding - With Cable Interaction 0.333 Bed Stope 3H:FV [18.5 degrees) - Fallure by Stiding - Wit Cable Interaction 0.333	13.3	24.1 17.8 13.7	197	24.5 16.5	33.7 19.4 15.0	35.0 26.7 20.6	209 19.0 14.6	19.9 23.6 16.2	340 193 118	26.5	324 29.4 22.6
Bed Stope 4H;1V (14 degrees) - Failure by Over-Turneg - No Cable Interaction 0.250 Bed Stope 4H;1V (14 degrees) - Failure by Silding - With Cable Interaction 0.250 Bed Stope 4H;1V (14 degrees) - Failure by Silding - No Cable Interaction 0.250	25.1 14.2 11.1	19.3	25.0 27.0 8.6 8.6	25.5	34.3	35.6 29.0	215 192 148	20.7	316	33.5 26.7 20.6	29.3
Bed Stope 5H-1V (11.3 degrees) - Faltare by Over-Turning - No Cable interaction 0.200 Bed Stope 5H-1V (11.5 degrees) - Faltare by Sticling - With Cable interaction 0.200 Bed Stope 5H-1V (11.3 degrees) - Faltare by Sticling - No Cable interaction 0.200	26.4 15.1	28.0 28.2 45.5	28.6	27.5	34.6 22.1 17.0	36.3 30.3 33.5	27.8 19.5 15.0	24.2	349 (9.8	33.9	33.8 30.2 20.2
Testing Authority Colorado State University, University of Minnesota, University of Windsox)								

ATTACHMENT 17F

Proposed Culverts

Subject: Stormwater Management - Proposed Channel Flows

Job No. 2018-3854 | Made I

Made by: VEF /\(\)

Date 07-15-20

Ref.

Checked by: VEN

Sheet 1 of 1

Revised by PGS 08/27/2021

Objective: The objective of this analysis is to estimate the flow in the proposed stormwater management channels under the design storms being considered.

Design Approach and Assumptions:

Use HydroCad, a computer software which implements the principles of TR-55 and TR-20 for larger drainage areas. The input data for each is as follows:

- With proposed channel flows for the 25 year, 24 hour storm event, size the Culverts for road crossings.
- 2) Assume orifice flow, so use a nomograph developed by the HDPE pipe manufacturer.

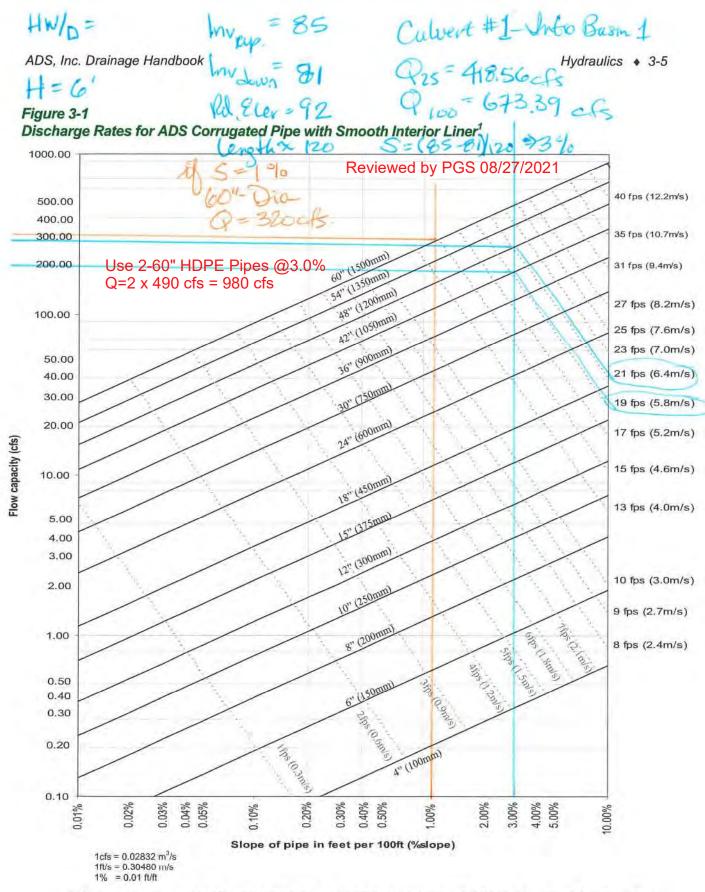
Calculations:

See the attached nomographs.

References:

- HydroCAD, V8.5.
- Advanced GeoServices Corp, Calculations entitled "Stormwater Management Proposed Channel Flow," dated July 15, 2020.

Conclusions:


A summary of the inflow and the culvert sizes provided in the table below.

Culvert	Inflow Channel	25 year, 24 hour	100 year, 24 hour	Cul	vert Dimension	ns
		Q (cfs)	Q (cfs)	Culvert Dia	# Culverts	Material
1	PC-5	418.56	673.39	60 inches	2	HDPE
2	PC-4F	347.91	552.08	30-inches	4	HDPE
3	PC-10	68.46	164.87	48-inches	11	HDPE
4	PC-8C	279.9	444.63	54-inches	2	HDPE
5	PC-2	31.8	57.96	24-inches	2	HDPE
AR-1	DC-2	67	106	24-inches	3	HDPE
AR-2	1/2 DC-1	30	47	18-inches	2	HDPE
AR-3	-1/3 DC-10	20	30	18-inches	2	HDPE
AR-4-3	PC-8A	36.5	57.3	24-inches	2	HDPE

6 PC-1 44.0 101.3 30-inch 2 HDPE

7 PC-6 24.0 65.73 30-inch 1 HDPE

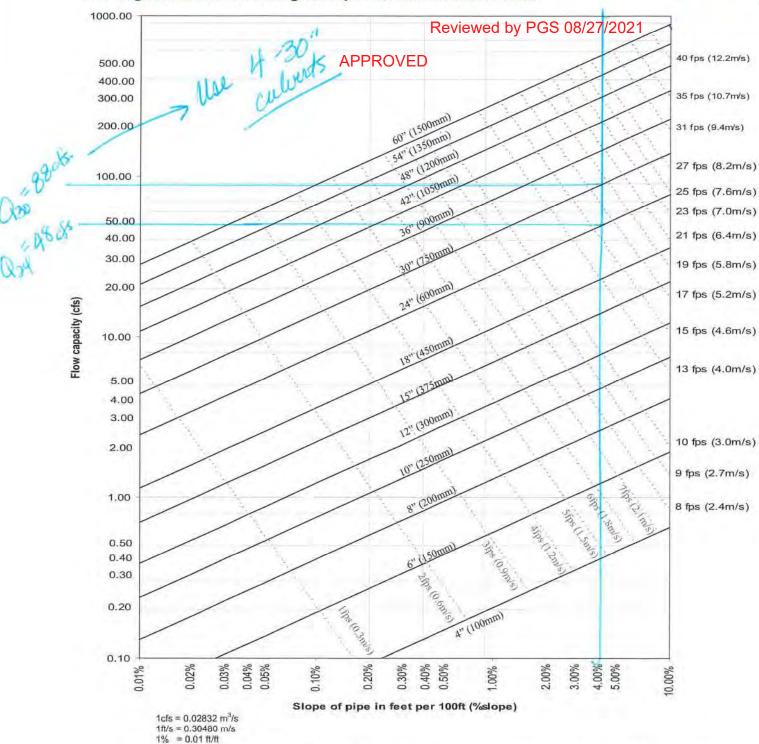
8 Off-site flow to Basin 4 186.05 399.01 48-inches 1 HDPE

1. Applicable products: N-12[®], MEGA GREEN[®], N-12 STIB, N-12 WTIB, HP STORM, SaniTite[®], SaniTite HP, N-12 Low Head

Note: Based on a design Manning's "n" of 0.012.

Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity. Redeveloped from FHWA HDS 3 – Design Charts for Open-Channel Flow²

Culvert #2 -> Charmel 4F


ADS, Inc. Drainage Handbook

Q25 = 3P791

Quillet = 90

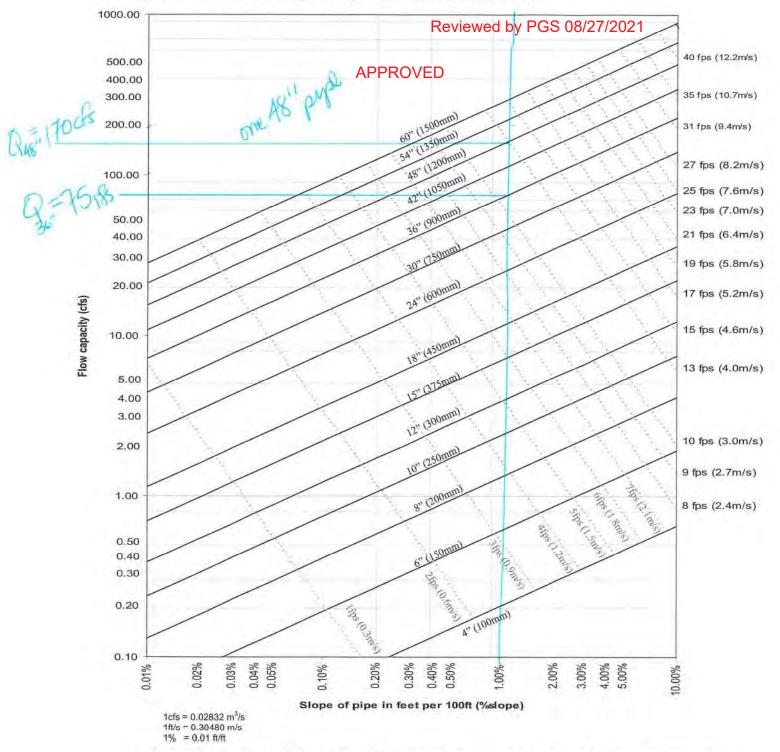
Culvert Length = 100 fth

Reviewed by PGS 08/27/2021

1. Applicable products: N-12[®], MEGA GREEN[®], N-12 STIB, N-12 WTIB, HP STORM, SaniTite[®], SaniTite HP, N-12 Low Head

Note: Based on a design Manning's "n" of 0.012.

Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity.


Florm PC10 - Barrital

ADS, Inc. Drainage Handbook Q25 = 68,46cfs

Pique 3-1

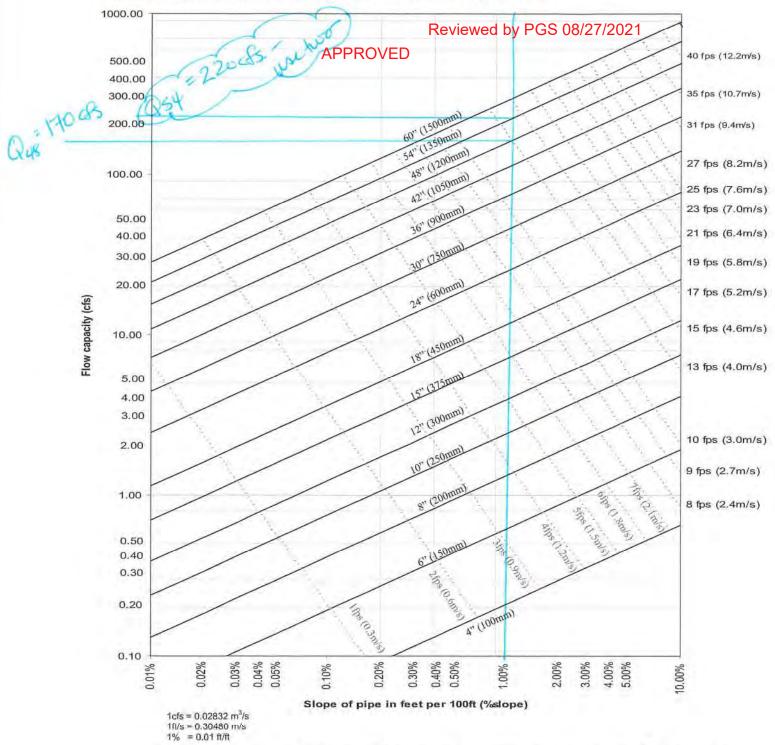
Hydraulics ♦ 3-5

Figure 3-1 Discharge Rates for ADS Corrugated Pipe with Smooth Interior Liner¹

1. Applicable products: N-12®, MEGA GREEN®, N-12 STIB, N-12 WTIB, HP STORM, SaniTite®, SaniTite HP, N-12 Low Head

Based on a design Manning's "n" of 0.012. Note:

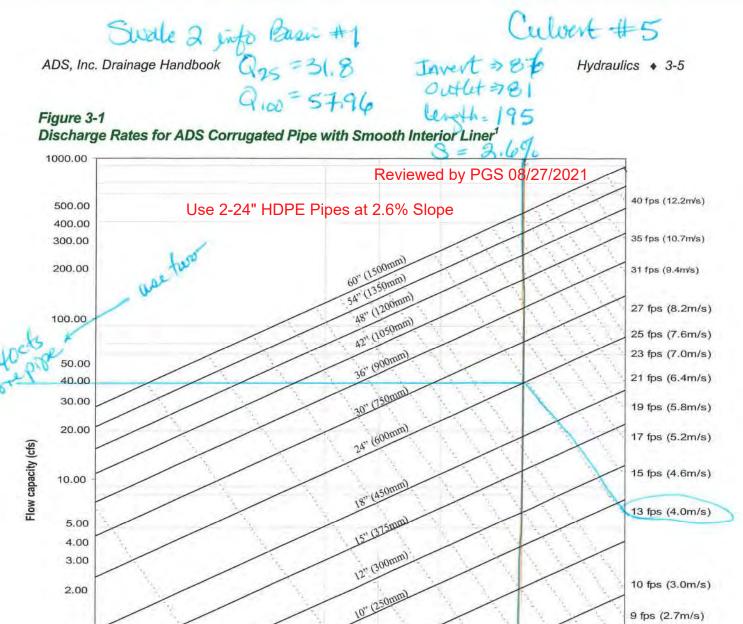
> Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity. Redeveloped from FHWA HDS 3 – Design Charts for Open-Channel Flow²


Culevert #4 -> PC 8C -> Basin #3

ADS, Inc. Drainage Handbook

P25 = 279.9 P100 = 444.63

Basin #3 | Road Inlet = 76.8 279.9 Outlet = 720 Hydraulics + 3-5 44.63 | S=1%


Figure 3-1
Discharge Rates for ADS Corrugated Pipe with Smooth Interior Liner¹

1. Applicable products: N-12®, MEGA GREEN®, N-12 STIB, N-12 WTIB, HP STORM, SaniTite®, SaniTite HP, N-12 Low Head

Note: Based on a design Manning's "n" of 0.012.

Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity.

1. Applicable products: N-12[®], MEGA GREEN[®], N-12 STIB, N-12 WTIB, HP STORM, SaniTite[®], SaniTite HP, N-12 Low Head

0.40%

0.50%

0.30%

Slope of pipe in feet per 100ft (%slope)

8" (200mm

4" (100mm)

Note: Based on a design Manning's "n" of 0.012.

0.02%

1cfs = 0.02832 m³/s 1ft/s = 0.30480 m/s 1% = 0.01 ft/ft

0.03%

0.04%

1.00

0.50 0.40 0.30

0.20

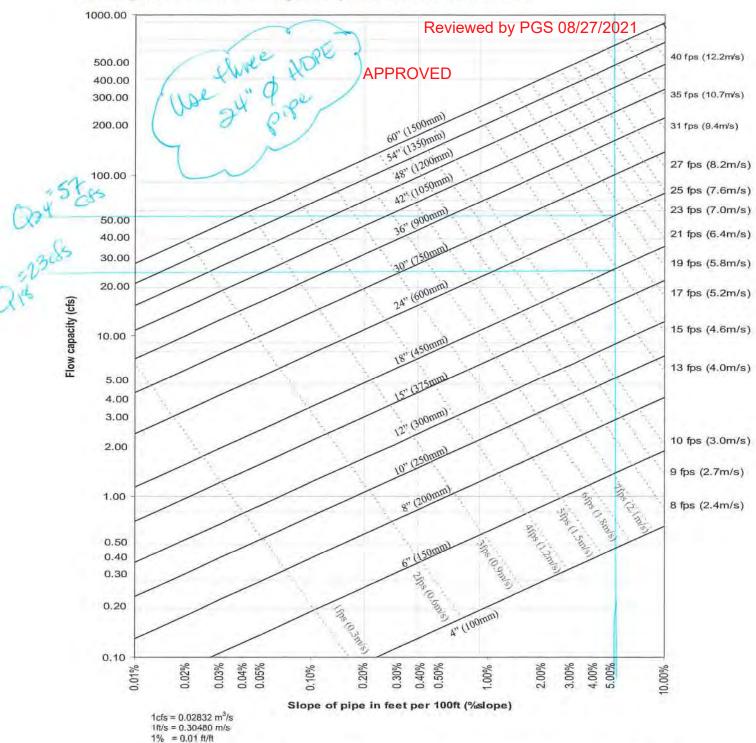
0.10

0.01%

Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity. Redeveloped from FHWA HDS 3 – Design Charts for Open-Channel Flow²

%00.01

3.00%

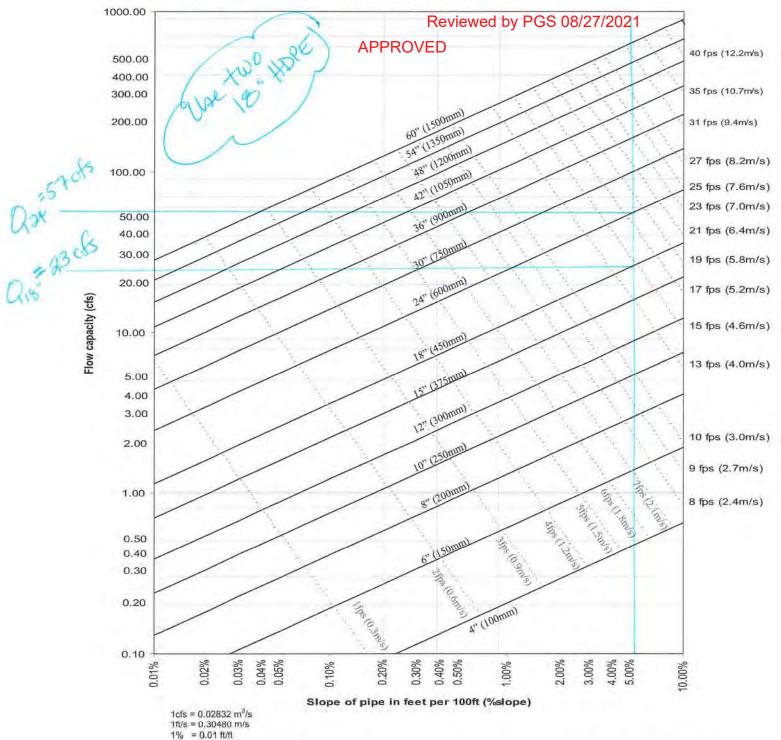

8 fps (2.4m/s)

Final Cap Access Road Culteret AR-1 (DC-2)

ADS, Inc. Drainage Handbook $Q_{25} = 67 \text{ cfs}$ Q100 = 106 cfs

Hydraulics ♦ 3-5 S=6%

Figure 3-1 Discharge Rates for ADS Corrugated Pipe with Smooth Interior Liner¹


1. Applicable products: N-12®, MEGA GREEN®, N-12 STIB, N-12 WTIB, HP STORM, SaniTite®, SaniTite HP, N-12 Low Head

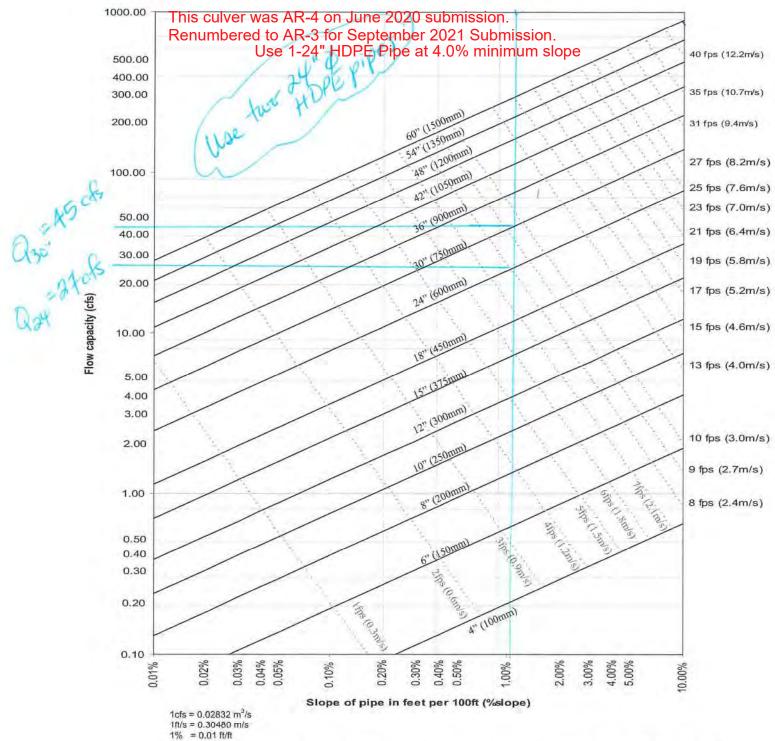
Note: Based on a design Manning's "n" of 0.012.

Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity.

Hydraulics • 3-5

1. Applicable products: N-12®, MEGA GREEN®, N-12 STIB, N-12 WTIB, HP STORM, SaniTite®, SaniTite HP, N-12 Low Head

Note: Based on a design Manning's "n" of 0.012.


Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity.

9100 = 573

Hydraulics ♦ 3-5

8=190

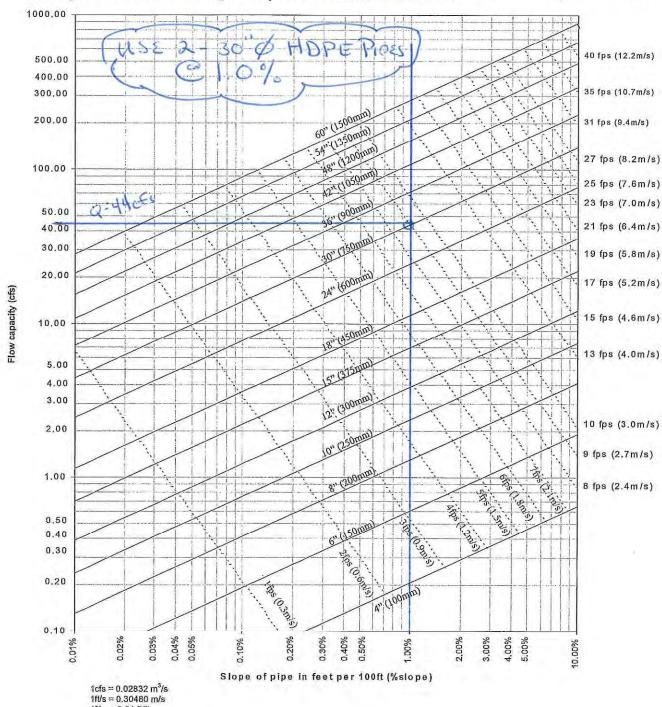
Figure 3-1 Discharge Rates for ADS Corrugated Pipe with Smooth Interior Liner¹

1. Applicable products: N-12®, MEGA GREEN®, N-12 STIB, N-12 WTIB, HP STORM, SaniTite®, SaniTite HP, N-12 Low Head

Note: Based on a design Manning's "n" of 0.012.

Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity.

CULVERT # 6


Q25= 44.0 cFs

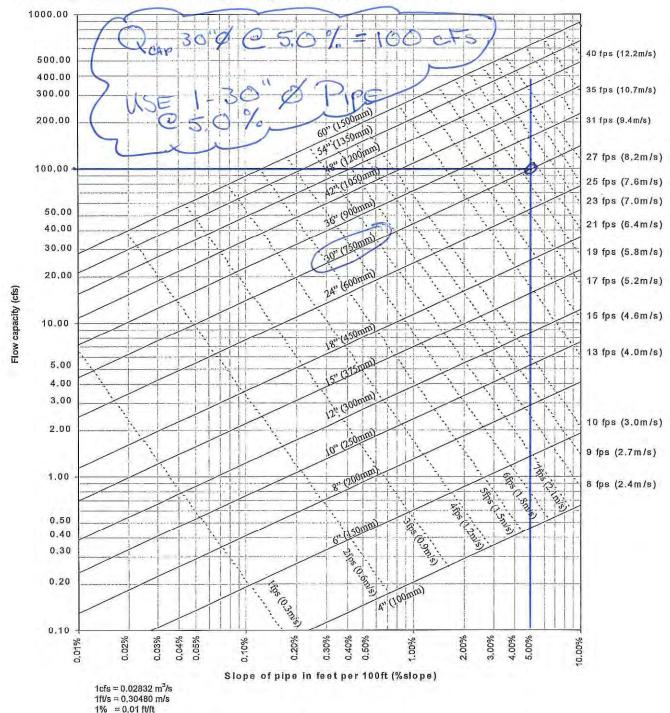
ADS, Inc. Drainage Handbook

IE (up) = 117.0 IE (DOWN) = 115.8

Hydraulics • 3-5 L= 120 LF S= 0.01 ++/-

Figure 3-1
Discharge Rates for ADS Corrugated Pipe with Smooth Interior Liner¹

1. Applicable products: N-12[®], MEGA GREEN[®], N-12 STIB, N-12 WTIB, N-12 HP, SaniTite[®], SaniTite HP, N-12 Low Head


Note: Based on a design Manning's "n" of 0.012.
Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity.
Redeveloped from FHWA HDS 3 – Design Charts for Open-Channel Flow²

CULVERT #7

ADS, Inc. Drainage Handbook

Q₂₅= 24.0 cFs IE(up)=105.00 L=100' Hydraulics + 3-5 IE(down)=100.00 S=0.05 f+/FI

Figure 3-1
Discharge Rates for ADS Corrugated Pipe with Smooth Interior Liner¹

1. Applicable products: N-12[®], MEGA GREEN[®], N-12 STIB, N-12 WTIB, N-12 HP, SaniTite[®], SaniTite HP, N-12 Low Head

Note: Based on a design Manning's "n" of 0.012.
Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity.
Redeveloped from FHWA HDS 3 – Design Charts for Open-Channel Flow²

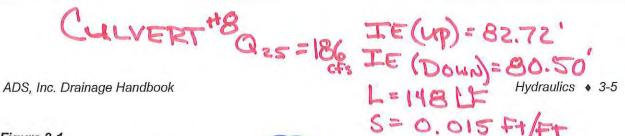
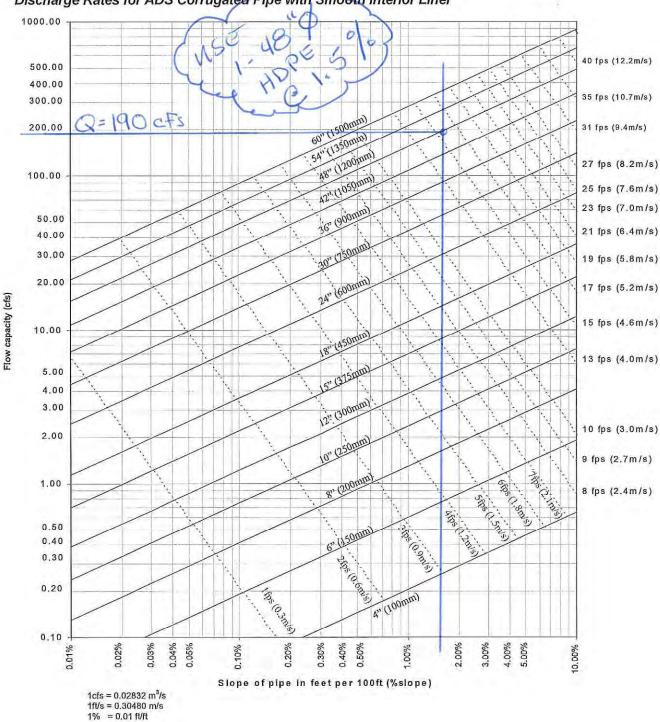
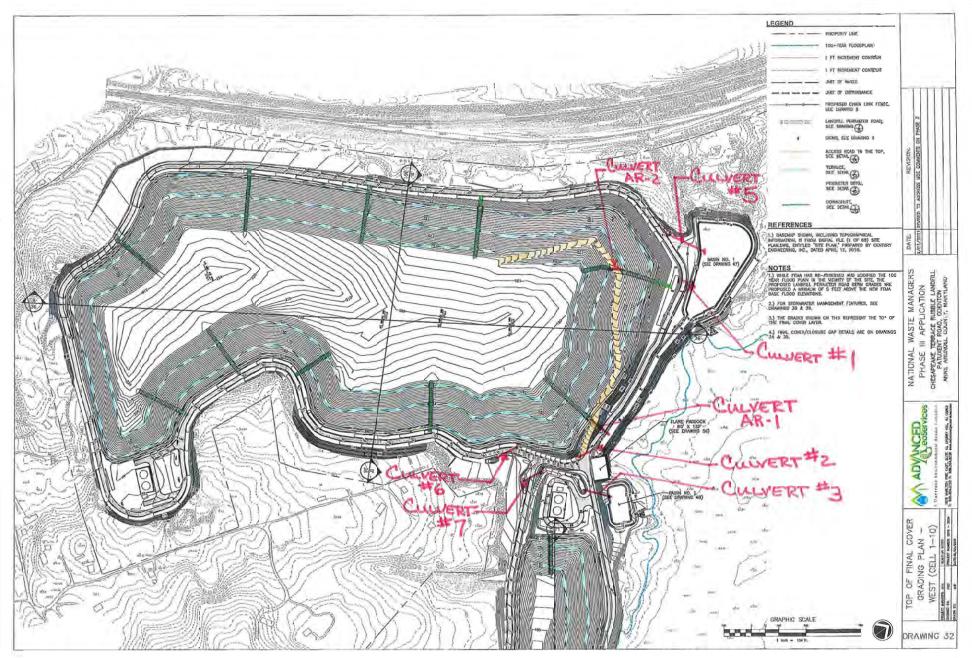
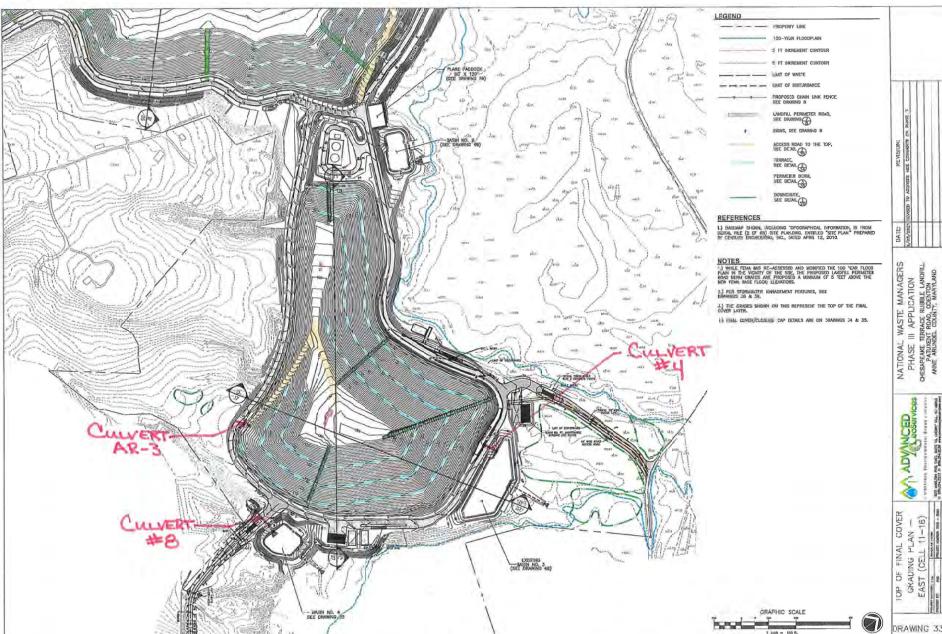



Figure 3-1
Discharge Rates for ADS Corrugated Pipe with Smooth Interior Liner¹



1. Applicable products: N-12[®], MEGA GREEN[®], N-12 STIB, N-12 WTIB, N-12 HP, SaniTite HP, N-12 Low Head


Note: Based on a design Manning's "n" of 0.012.

Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity.

Redeveloped from FHWA HDS 3 – Design Charts for Open-Channel Flow²

Andready by the section of the last constant

CORE IN THE CORE OF MANY OF OCCUPANT AND AN ADDRESS OF THE CORE OF

DRAWING 33

ATTACHMENT 17G

WQv Facility Design

JULY 2020 20183854

UNIFIED STORMWATER SIZING CRITERIA

WQV BASIN + UNMANAGED

RAINFALL DEPTH (INCHES) P= 1 IN

VOLUMETRIC RUNOFF COEFFICIENT Rv= 0.2732 (0.05 + 0.009(I))

PERCENT IMPERVIOUS COVER I= 24.80 %

AREA (ACRES) A= 5.25 ACRES

SOIL SPECIFIC RECHARGE FACTOR (INCHES) S= 0.21 INCHES (SEE BELOW)

WATER QUALITY VOLUME (ACRE-FEET) WQv*= **0.12** ACRE-FEET RECHARGE VOLUME (ACRE-FEET) Rev= 0.02 ACRE-FEET 0.09 ACRE-FEET

*MINIMUM 0.2 INCHES/ACRE WQv FOR <15% IMPERVIOUS COVERAGE

COMPOSITE SOIL SPECIFIC RECHARGE FACTOR CALCULATION

%	S	%*S
22.8%	0.38	0.087
18.6%	0.26	0.048
50.2%	0.13	0.065
8.5%	0.07	0.006
100.1%		0.21 COMPOSITE S
	22.8% 18.6% 50.2% 8.5%	22.8% 0.38 18.6% 0.26 50.2% 0.13 8.5% 0.07

WQv PROVIDED= 0.12 ACRE-FEET 89.5 FEET JULY 2020 20183854

(<15% IMP*)

ATTACHMENT 17H

Soil Loss

Subject: Final Cover Soil Loss Analysis

Job No. 2018-3854

Made by:

Date 07/11/19

Ref. Phase III Report

Checked by:

Sheet 1 of 2

Objective:

Using the Universal Soil Loss Equation, estimate the amount of soil loss that can be expected to occur on the steepest section of the finished cap area and verify that it is below the Resource Conservation and Recovery Act (RCRA) standard of 2 tons/acre/year.

Design Criteria and Assumptions:

- The erosivity index, R, was obtained from Figure 20 of "Evaluating Cover Systems for Solid and Hazardous Waste," (Lutton). The erosivity index was determined to be 200.
- 2.) The soil erodibility factor, K, was obtained from Table 5 of "Evaluating Cover Systems for Solid and Hazardous Waste," (Lutton). The cap cover soil will consist of a sandy loam with an organic matter content of at least 2%. Therefore the soil erodibility factor was determined to be 0.24 tons/acre.
- 3.) From figures "Final Grading Plan West Section," Advanced GeoServices, Corp., July 2020, and "Final Grading Plan East Section," Advanced GeoServices, Corp., July 2020, the steepest slope of the final cover is 3:1 H:V, or approximately 33%, and the longest slope length is 100. Using this information, and Table 15-3 of "Hydrologic Analysis and Design," (McCuen), the topographic factor, T, was determined to be 9.5.
- 4.) The crop management factor, C, was obtained from Table 15-4 of "Hydrologic Analysis and Design," (McCuen). The landfill cover cap vegetation will be a high productivity grass and legume mix. Therefore the crop management factor was determined to be 0.004.
- 5.) The conservation practice factor, P, was obtained from Table 15-5 of "Hydrologic Analysis and Design," (McCuen). A conservation practice factor of 1.0 (no support practice) was selected in order to produce a more conservative estimate of soil loss.

Calculation:

The Universal Soil Loss Equation was used to determine the average annual soil loss:

E = RKTCP

Where:

E = soil loss (tons/acre/year)

R = erosivity index

K = soil erodibility factor (tons/acre)

T = topographic factor

C = crop management factor

P = conservation practice factor

Using the design criteria and assumptions stated above, the average annual soil loss is estimated to be:

 $E = 200 \times 0.24$ tons/acre x 9.5 x 0.004 x 1.0 = 1.824 tons/acre/year

Subject:	Final	Cover	Soil	Loss	Analysis
----------	-------	-------	------	------	----------

Job No. 2018-3854

Made by:

Date 07/11/19

Ref. Phase III Report

Checked by:

Sheet 2 of 2

Conclusion:

Using the Universal Soil Loss Equation and the design criteria and assumptions stated above, the average annual soil loss was estimated to be 1.824 tons/acre/year. This value is below the maximum allowable annual soil loss of 2.0 tons/acre/year per RCRA standards.

References:

- Lutton, R. J. Evaluating Cover Systems for Solid and Hazardous Waste. Municipal Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1982.
- McCuen, Richard H. Hydrologic Analysis and Design. Prentice-Hall, 1989.
- "Final Grading Plan West Section." Prepared by Advanced GeoServices, Corp., August 2019.
- 4.) "Final Grading Plan East Section." Prepared by Advanced GeoServices, Corp., August 2019.

Not only is erosion objectionable in itself but erosion can degrade the cover and seriously reduce its effectiveness.

Evaluate Erosion Potential

Step 19

The USDA universal soil loss equation (USLE) is a convenient tool for use in evaluating erosion potential. The USLE predicts average annual soil loss as the product of six quantifiable factors. The equation is:

A = RKLSCP

where A = average annual soil loss, in tons/acre

R = rainfall and runoff erosivity index

K = soil erodibility factor, tons/acre

L = slope-length factor

S = slope-steepness factor

C = cover-management factor

P = practice factor

The data necessary as input to this equation are available to the evaluator in a figure and tables included below. Note that the evaluations in Step 8 on soil composition and Steps 25-32 on vegetation all impact on the evaluation of erosion also.

Factor R in the USLE can be calculated empirically from climatological data. For average annual soil loss determinations, however, R can be obtained directly from Figure 20. Factor K, the average soil loss for a given

Figure 20. Average annual values of rainfall-erosivity factor R. 11

soil in a unit plot, pinpoints differences in erosion according to differences in soil type. Long-term plot studies under natural rainfall have produced K values generalized in Table 5 for the USDA soil types.

TABLE 5. APPROXIMATE VALUES OF FACTOR K FOR USDA TEXTURAL CLASSES 11

	Organic	matter	content
Texture class	0.5%	2%	4%
***************************************	K	K	K
Sand	0.05	0.03	0.02
Fine sand	.16	,14	.10
Very fine sand	.42	.36	.28
Loamy sand	.12	.10	.08
Loamy fine sand	.24	.20	.16
Loamy very fine sand	- 44	.38	.30
Sandy loam	.27	. 24	.19
Fine sandy loam	-35	.30	. 21
Very fine sandy loam	.47	.41	- 33
Loam	.38	. 34	.29
Silt loam	.48	. 42	.33
Silt	.60	.52	.42
Sandy clay loam	.27	.25	.23
Clay loam	.28	, 25	. 2
Silty clay loam	.37	.32	.20
Sandy clay	.14	.13	.12
Silty clay	.25	.23	.19
Clay		0.13-0.	29

The values shown are estimated averages of broad ranges of specific-soil values. When a texture is near the borderline of two texture classes, use the average of the two K values.

The evaluator must next consider the shape of the slope in terms of length and inclination. The appropriate LS factor is obtained from Table 6. A nonlinear slope may have to be evaluated as a series of segments, each with uniform gradient. Two or three segments should be sufficient for most engineered landfills, provided the segments are selected so that they are also of equal length (Table 6 can be used, with certain adjustments). Enter Table 6 with the total slope length and read LS values corresponding to the percent slope of each segment. For three segments, multiply the chart LS values for the upper, middle, and lower segments by 0.58, 1.06, and 1.37, respectively. The average of the three products is a good estimate of the

TABLE 15-4 Generalized values of the cover and management factor, C, in the 37 states east of the Rocky Mountains*

		Productivity Level	The first
		High	Mo
Line no.	Crop, Rotation, and Management ^{a.4}	Ď.	C Value
Base value:	Base value: continuous fallow, tilled up and down slope	1.00	1,00
CORN			
I	C, RdR, fall TP, conv (1)	0,54	0.62
n) +	C. RdR, spring TP, conv (1)	0.50	65.0
7	C, RdL, Iall TP, conv (I)	0.42	5 6
d n	C, RdR, we seeding, spring TP, conv (1) C, RdL, standing, spring TP, conv (1)	0.38	0.48
M	(1) Gill shows defaile sometime (1)	0.35	0.44
1	Collage WRd (all TP) (2)	0.31	0.35
- 50	C. Rdl., fall chisel, spring disk, 40-30% rc (1)	0.24	0.30
6	C(silage), W we seeding, no-till pl in c-k W (1)	0.20	0.24
10	C(RdL)-W(RdL, spring TP) (2)	0.20	0.28
11	C, fall shred stalks, chisel p1, 40-30% re (1)	61.0	0.26
17	C-C-C-W-M, RdL, TP for C, disk for W (5)	0.17	0.2
13	C, RdL, strip till row zones, 55-40% rc (1)	0.16	0.2
4	C.C.C.WMM. RdL, TP for C, disk for W (b)	0.14	0.4
g	C-C-W-M, RdL, I F for C, disk for W (4)	71.0	,
16	C, fall shred, no-till pl, 70-50%, rc (1)	0.11	0.18
17	C-C-W-M-M, RdL, 1P for C, disk for W (3)	0.037	0
10	C.C. W.M. Ref. no.411 at 24 C. (5)	0.068	0.1
20 2	C, no-till pl in o-k wheat, 90-70% re (1)	0.062	0.1
21	C-C-C-W-M-M. no-till of 2d & 3rd C (6)	190'0	0.1
121	C.W.M, RdL, TP for C, disk for W (3)	0.055	0.0
23	C-C-W-M-M, RdL, no-till pl 2d C (5)	0.051	0.0
24	C.W-M-M, RdL, TP for C, disk for W (4)	0.039	0.0
25	C-W-M-M-M, RdL, TP for C, disk for W (5)	0.032	0.0
26	C, no-till pl in c-k sod, 95-80% re (1)	0.017	0.0
COTTON		4	
27	Cot, conv (Western Plains) (I)	0.34	0.4
3	(1) (1)		
MEADOW	Greece and lemma miv	0.004	0.0
9 8	Alfalfa lespedeza or Sericia	0.020	
31	Sweet clover	0.025	
SORGHUM, U	SORGHUM, GRAIN (Western Plains)*	1000	
32	Rdl, spring TP, conv (1)	0.43	0.5

• Values given for slopes longer than 300 ft or steeper than 18% are extrapolations beyond the range of the research data, and therefore less certain than the others.
Adjustments for irregularity of slope are available.

Slope Length (fi)												
1000	008	009	005	400	900€	500	OST	100	SL	05	52	Percent Slope
02.0 02.0 04.0	91.0 42.0 86.0	71.0 52.0 \$£.0	0.16 0.21 0.33	02.0 02.0 15.0	0.14 0.18 0.28	21.0 61.0 22.0	11.0 21.0 51.0	0,10 0,13 0,20	90.0 \$1.0 91.0	80.0 01.0 01.0	70,0 90,0 €1,0	0.5 I
L'1 0'1 /S'0	0.54 26.0 2,5	0.49 0.49 1.3	7'1 94'0 45'0	6.70 0.70 1.1	04.0 53.0 £9.0	25.0 62.0 67.0	55.0 74.0 66.0	92.0 04.0 1.2.0	95.0 85.0 86.0	65.0 05.0 85.0	0,19 0,23 0,27	\$ \$ E
E'P TE TZ	8.5 8.5 9.9	4.E 4.Z 7.7	2.2 2.2 3,1	1.4 2.0 7.2	1.2 1.7 4.5	6'1 1'1 56'0	28.0 7.1	79.0 69.0 1.1	82.0 88.0 2.1	81.0 07.0 79.0	PE.0 02.0 98.0	9 9
0.6 £,7 7.2	1,2 2,3 0,8	6.2 0.7	0.b 1.2 4.0	8.6 8.4 8.2	0.4 9.4	3.3	2,2 8.2 8.5	8.1 2.3 2.5	0.5 2.5 2.5	6.1 6.1 0.2	71 060	17 13
11.0	9.7 0.71 0.71	0.01 0.01	1.6 0.51	6.9 8.2 0.21	0.0 1.7 0.01	8.2 8.8	2.4 0.2 2.7	4.E 1.4 9.2	0.E 2.E 1.2	2.4	7.1 0.2 3,0	18 20 22
25.0	0.ES	31,0	0.81	16.0	14.0 31.0	0.11.0 18.0 25.0	0.21 0.22	0.8 0.81 0.81	0.11 0.11	9.0 9.0 0.51	0.4 6.8	0£ 0¢ 0S
-	-	_		-	-	_	28.0	0.55	20.0	0.91	0.51	09

TABLE 15-4 Generalized values of the cover and management factor, C, in the 37 states east of the Rocky Mountains* (Continued)

		Productivity Level ^b		
		High	Mod	
Line no.	Crop, Rotation, and Management ^{e,d}	C Value		
Base value:	continuous fallow, tilled up and down slope	1.00 1.		
SOYBEANS		100.G	0.54	
34	B, RdL, spring TP, conv (1)	0.48	0.54	
35	C-B, TP annually, conv (2)	0,43	0.51	
36	B. no-till pl	0.22	0.28	
37	C-B, no-till pi, fall shred C stalks (2)	0.18	0.22	
WHEAT	5. A. B. STOLE CALLS	0.38	1	
38	W-F, fall TP after W (2)	0.32	1	
39	W-F. stubble mulch, 500 lbs rc (2)	0.21	1	
40	W-F, stubble mulch, 1000 lbs rc (2)	1000	1	
41	Spring W, RdL, Sept TF, conv (N. Dak. and S. Dak.) (1)	0.23		
42	Winter W, RdL, Aug TP, conv (Kans.) (1)	0.19	1	
43	Spring W, stubble mulch, 750 lb rc (1)	0.15		
44	Spring W, stubble mulch, 1250 lb rc (1)	0.12	1	
45	Winter W, stubble mulch, 750 lb rc (1)	0.11		
46	Winter W, stubble mulch, 1250 lb rc (1)	0.10		
47	W-M, conv (2)	0.054		
48	W-M-M, conv (3)	0.026		
49	W-M-M-M, conv (4)	0.021	1	

^{*} This table is for illustrative purposes only and is not a complete list of cropping systems or potential practices. Values of C differ with rainfall pattern and planting dates. These generalized values show approximately the relative erosion-reducing effectiveness of various crop systems, but locationally derived C values should be used for conservation planning at the field level. Tables of local values are available from the Soil Conservation Service.

"High level is exemplified by long-term yield averages greater than 75 bu of corn or 3 tons of grassand-legume hay; or cotton management that regularly provides good stands and growth.

"Numbers in parentheses indicate number of years in the rotation cycle. (1) designates a continuous one-crop system.

⁴ Abbreviations

fallow soybeans R M grass and legume hay C corn plant chemically killed c-k w wheat conventional conv we winter cover cotton cot

pounds of crop residue per acre remaining on surface after new crop seeding lb rc percentage of soil surface covered by residue mulch after new crop seeding % rc

70-50% re 70% cover for C values in first column; 50% for second column residues (corn stover, straw, etc.) removed or burned

RdR all residues left on field (on surface or incorporated) RdL

turn plowed (upper 5 or more inches of soil inverted, covering residues) TP

Grain sorghum, soybeans, or cotton may be substituted for corn in lines 12, 14, 15, 17-19, 21-15 to estimate C values for sod-based rotations.

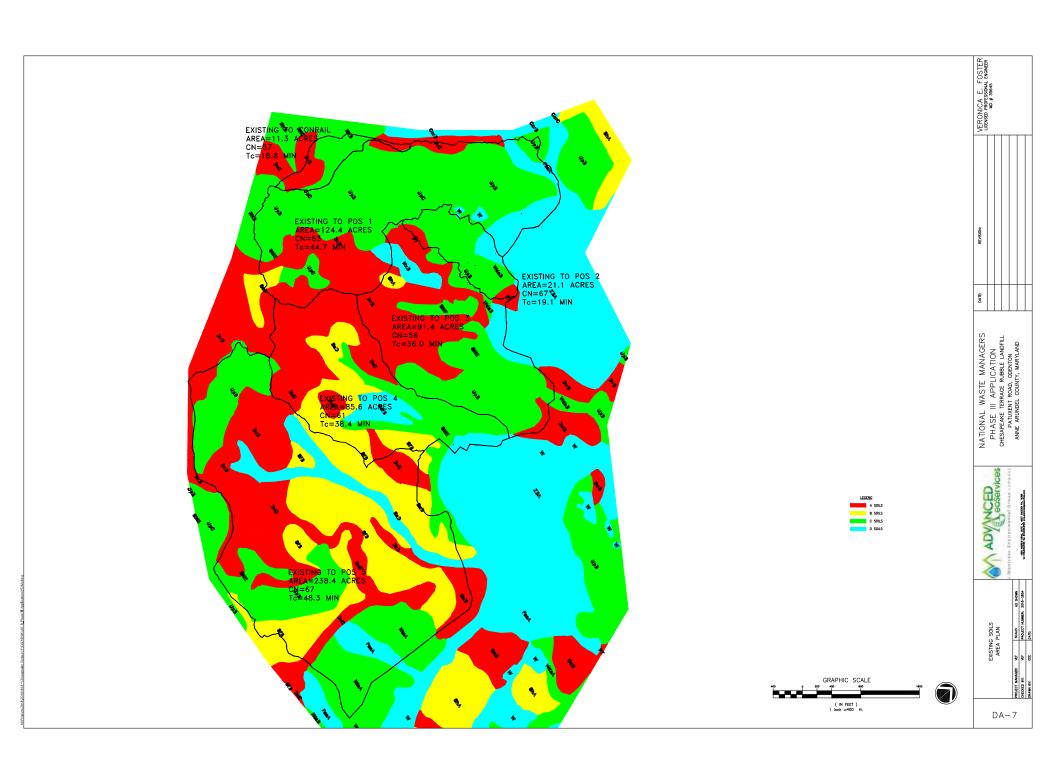
TABLE 15-5 Values of support-practice factor, P

	Land Slope (%)						
	1.1-2	2.1-7	7.1-12	12.1-18	18.1-24		
Practice	Factor P						
Contouring, P,	0.60	0,50	0.60	0.80	0.90		
Contour strip cropping, P Pw							
R-R-M-M	0.30	0.25	0.30	0.40	0.45		
R-W-M-M	0.30	0.25	0.30	0.40	0.45		
R-R-W-M	0.45	0.38	0.45	0.60	0.68		
R-W	0.52	0.44	0.52	0.70	0.90		
R-O	0.60	0.50	0.60	0.80	0.90		
Contour listing or ridge planting, Pc1	0.30	0.25	0.30	0.40	0.45		
Contour terracing, b.e P,	0.6/√n	$0.5/\sqrt{n}$	$0.6/\sqrt{n}$	$0.8/\sqrt{n}$	0.9/√π		
No support practice	1.0	1.0	1.0	1.0	1.0		

^{*} R, rowcrop; W, fall-seeded grain; O, spring-seeded grain; M, meadow. The crops are grown in rotation and so arranged on the field that rowcrop strips are always separated by a meadow or winter-grain

Predicted values of E represent average, time-invariant estimates. Given that R is based on an average number and distribution of storms per year, actual values of E would vary from year to year depending on the number, size, and timing of erosive rainstorms and other weather conditions. Although any one predicted value of E may not be highly accurate, the USLE should be more reliable when it is used to measure either relative effects or long-term sheet and rill erosion rates.

Example 15-1: Soil Loss Estimation with USLE. The general data requirements for making soil loss estimates with the USLE equation are (1) site location (to get R); (2) soil properties (to get K); (3) flow length and slope (to get T); (4) crop, rotation, and management practices (to get C); and (5) slope and support practice (to get P). The estimation process will be illustrated using a hypothetical example. The site, which has a drainage area of 2 acres, is located in central Illinois. The site of interest has an average slope of 2.5% and a flow length of 300 ft. A soil analysis indicates 25% sand, 2% organic matter, 35% silt and very fine sand, a medium granular structure, and moderate permeability. The plot is used for corn, with a crop management value of 0.31, which was determined from information published locally. No support practice is provided.


b These P, values estimate the amount of soil eroded to the terrace channels and are used for conservation planning. For prediction of off-field sediment, the P, values are multiplied by 0.2.

n, number of approximately equal-length intervals into which the field slope is divided by the terraces. Tillage operations must be parallel to the terraces.

ATTACHMENT 17I

Soil Survey Map

